Sorry, you need to enable JavaScript to visit this website.

facebooktwittermailshare

MOVING-CAMERA VIDEO SURVEILLANCE IN CLUTTERED ENVIRONMENTS USING DEEP FEATURES

Abstract: 

This paper deals with the challenging problem of visual anomaly detection in a cluttered environment using videos acquired with a moving camera. The anomalies considered are abandoned objects.
A new method is proposed for comparing two videos (an anomalyfree reference video and a target one possibly with anomalies) by
using convolutional neural networks as feature extractors for a subsequent anomaly-detection stage using a classifier. Two classifier strategies are considered, namely a fully-connected neural network and a random forest algorithm. Results for a comprehensive abandoned object database acquired with a moving camera in a cluttered environment indicate that the proposed architecture can match even the state-of-the-art algorithms in terms of object-detection performance, with a reduction in processing time of 80%.

up
0 users have voted:

Paper Details

Authors:
Bruno M. Afonso, Lucas P. Cinelli, Lucas A. Thomaz, Allan F. da Silva, Eduardo A. B. da Silva, Sergio L. Netto
Submitted On:
4 October 2018 - 12:21pm
Short Link:
Type:
Poster
Event:
Presenter's Name:
Lucas Thomaz
Paper Code:
2622
Document Year:
2018
Cite

Document Files

poster-icip2018-final.pdf

(12 downloads)

Subscribe

[1] Bruno M. Afonso, Lucas P. Cinelli, Lucas A. Thomaz, Allan F. da Silva, Eduardo A. B. da Silva, Sergio L. Netto, "MOVING-CAMERA VIDEO SURVEILLANCE IN CLUTTERED ENVIRONMENTS USING DEEP FEATURES", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3451. Accessed: Nov. 19, 2018.
@article{3451-18,
url = {http://sigport.org/3451},
author = {Bruno M. Afonso; Lucas P. Cinelli; Lucas A. Thomaz; Allan F. da Silva; Eduardo A. B. da Silva; Sergio L. Netto },
publisher = {IEEE SigPort},
title = {MOVING-CAMERA VIDEO SURVEILLANCE IN CLUTTERED ENVIRONMENTS USING DEEP FEATURES},
year = {2018} }
TY - EJOUR
T1 - MOVING-CAMERA VIDEO SURVEILLANCE IN CLUTTERED ENVIRONMENTS USING DEEP FEATURES
AU - Bruno M. Afonso; Lucas P. Cinelli; Lucas A. Thomaz; Allan F. da Silva; Eduardo A. B. da Silva; Sergio L. Netto
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3451
ER -
Bruno M. Afonso, Lucas P. Cinelli, Lucas A. Thomaz, Allan F. da Silva, Eduardo A. B. da Silva, Sergio L. Netto. (2018). MOVING-CAMERA VIDEO SURVEILLANCE IN CLUTTERED ENVIRONMENTS USING DEEP FEATURES. IEEE SigPort. http://sigport.org/3451
Bruno M. Afonso, Lucas P. Cinelli, Lucas A. Thomaz, Allan F. da Silva, Eduardo A. B. da Silva, Sergio L. Netto, 2018. MOVING-CAMERA VIDEO SURVEILLANCE IN CLUTTERED ENVIRONMENTS USING DEEP FEATURES. Available at: http://sigport.org/3451.
Bruno M. Afonso, Lucas P. Cinelli, Lucas A. Thomaz, Allan F. da Silva, Eduardo A. B. da Silva, Sergio L. Netto. (2018). "MOVING-CAMERA VIDEO SURVEILLANCE IN CLUTTERED ENVIRONMENTS USING DEEP FEATURES." Web.
1. Bruno M. Afonso, Lucas P. Cinelli, Lucas A. Thomaz, Allan F. da Silva, Eduardo A. B. da Silva, Sergio L. Netto. MOVING-CAMERA VIDEO SURVEILLANCE IN CLUTTERED ENVIRONMENTS USING DEEP FEATURES [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3451