Sorry, you need to enable JavaScript to visit this website.

GlobalSIP 2018

The 6th IEEE Global Conference on Signal and Information Processing (GlobalSIP)  focuses on signal and information processing with an emphasis on up-and-coming signal processing themes. The conference features world-class plenary speeches, distinguished symposium talks, tutorials, exhibits, oral and poster sessions, and panels. GlobalSIP is comprised of co-located General Symposium and symposia selected based on responses to the call-for-symposia proposals.

Disparity Map Estimation from Cross-modal Stereo


Mono-modal stereo matching problem has been studied for decades. The introduction of cross-modal stereo systems in industrial scene increases the interest in cross-modal stereo matching. The existing algorithms mostly consider mono-modal setting so they do not translate well in cross-modal setting. Recent development for cross-modal stereo considers small local matching and focus mainly on joint enhancement. Therefore, we propose a guided filter-based stereo matching algorithm. It works by integrating guided filter equation in a basic cost function for cost volume generation.

Paper Details

Authors:
Thapanapong Rukkanchanunt, Takashi Shibata, Masayuki Tanaka, Masatoshi Okutomi
Submitted On:
28 November 2018 - 12:15am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

presentation.pdf

(322 downloads)

Subscribe

[1] Thapanapong Rukkanchanunt, Takashi Shibata, Masayuki Tanaka, Masatoshi Okutomi, "Disparity Map Estimation from Cross-modal Stereo", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3819. Accessed: Dec. 16, 2018.
@article{3819-18,
url = {http://sigport.org/3819},
author = {Thapanapong Rukkanchanunt; Takashi Shibata; Masayuki Tanaka; Masatoshi Okutomi },
publisher = {IEEE SigPort},
title = {Disparity Map Estimation from Cross-modal Stereo},
year = {2018} }
TY - EJOUR
T1 - Disparity Map Estimation from Cross-modal Stereo
AU - Thapanapong Rukkanchanunt; Takashi Shibata; Masayuki Tanaka; Masatoshi Okutomi
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3819
ER -
Thapanapong Rukkanchanunt, Takashi Shibata, Masayuki Tanaka, Masatoshi Okutomi. (2018). Disparity Map Estimation from Cross-modal Stereo. IEEE SigPort. http://sigport.org/3819
Thapanapong Rukkanchanunt, Takashi Shibata, Masayuki Tanaka, Masatoshi Okutomi, 2018. Disparity Map Estimation from Cross-modal Stereo. Available at: http://sigport.org/3819.
Thapanapong Rukkanchanunt, Takashi Shibata, Masayuki Tanaka, Masatoshi Okutomi. (2018). "Disparity Map Estimation from Cross-modal Stereo." Web.
1. Thapanapong Rukkanchanunt, Takashi Shibata, Masayuki Tanaka, Masatoshi Okutomi. Disparity Map Estimation from Cross-modal Stereo [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3819

Non-Asymptotic Rates for Communication Efficient Distributed Zeroth Order Strongly Convex Optimization


This paper focuses on the problem of communication efficient distributed zeroth order minimization of a sum of strongly convex loss functions. Specifically, we develop distributed stochastic optimization methods for zeroth order strongly convex optimization that are based on an adaptive probabilistic sparsifying communications protocol.

Paper Details

Authors:
Anit Kumar Sahu, Dusan Jakovetic, Dragana Bajovic, Soummya Kar
Submitted On:
27 November 2018 - 6:55pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

globalsip_talk.pdf

(14 downloads)

Subscribe

[1] Anit Kumar Sahu, Dusan Jakovetic, Dragana Bajovic, Soummya Kar, "Non-Asymptotic Rates for Communication Efficient Distributed Zeroth Order Strongly Convex Optimization", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3818. Accessed: Dec. 16, 2018.
@article{3818-18,
url = {http://sigport.org/3818},
author = {Anit Kumar Sahu; Dusan Jakovetic; Dragana Bajovic; Soummya Kar },
publisher = {IEEE SigPort},
title = {Non-Asymptotic Rates for Communication Efficient Distributed Zeroth Order Strongly Convex Optimization},
year = {2018} }
TY - EJOUR
T1 - Non-Asymptotic Rates for Communication Efficient Distributed Zeroth Order Strongly Convex Optimization
AU - Anit Kumar Sahu; Dusan Jakovetic; Dragana Bajovic; Soummya Kar
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3818
ER -
Anit Kumar Sahu, Dusan Jakovetic, Dragana Bajovic, Soummya Kar. (2018). Non-Asymptotic Rates for Communication Efficient Distributed Zeroth Order Strongly Convex Optimization. IEEE SigPort. http://sigport.org/3818
Anit Kumar Sahu, Dusan Jakovetic, Dragana Bajovic, Soummya Kar, 2018. Non-Asymptotic Rates for Communication Efficient Distributed Zeroth Order Strongly Convex Optimization. Available at: http://sigport.org/3818.
Anit Kumar Sahu, Dusan Jakovetic, Dragana Bajovic, Soummya Kar. (2018). "Non-Asymptotic Rates for Communication Efficient Distributed Zeroth Order Strongly Convex Optimization." Web.
1. Anit Kumar Sahu, Dusan Jakovetic, Dragana Bajovic, Soummya Kar. Non-Asymptotic Rates for Communication Efficient Distributed Zeroth Order Strongly Convex Optimization [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3818

Persistent Hyperspectral Observations of the Urban Lightscape

Paper Details

Authors:
J. Baur, G. Dobler, F. Bianco, M. Sharma, A. Karpf
Submitted On:
27 November 2018 - 6:33pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

slides for lecture MHI L.2.3.

(11 downloads)

Keywords

Additional Categories

Subscribe

[1] J. Baur, G. Dobler, F. Bianco, M. Sharma, A. Karpf, "Persistent Hyperspectral Observations of the Urban Lightscape", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3817. Accessed: Dec. 16, 2018.
@article{3817-18,
url = {http://sigport.org/3817},
author = {J. Baur; G. Dobler; F. Bianco; M. Sharma; A. Karpf },
publisher = {IEEE SigPort},
title = {Persistent Hyperspectral Observations of the Urban Lightscape},
year = {2018} }
TY - EJOUR
T1 - Persistent Hyperspectral Observations of the Urban Lightscape
AU - J. Baur; G. Dobler; F. Bianco; M. Sharma; A. Karpf
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3817
ER -
J. Baur, G. Dobler, F. Bianco, M. Sharma, A. Karpf. (2018). Persistent Hyperspectral Observations of the Urban Lightscape. IEEE SigPort. http://sigport.org/3817
J. Baur, G. Dobler, F. Bianco, M. Sharma, A. Karpf, 2018. Persistent Hyperspectral Observations of the Urban Lightscape. Available at: http://sigport.org/3817.
J. Baur, G. Dobler, F. Bianco, M. Sharma, A. Karpf. (2018). "Persistent Hyperspectral Observations of the Urban Lightscape." Web.
1. J. Baur, G. Dobler, F. Bianco, M. Sharma, A. Karpf. Persistent Hyperspectral Observations of the Urban Lightscape [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3817

Wideband Massive MIMO Channel Estimation via Sequential Atomic Norm Minimization

Paper Details

Authors:
Stelios Stefanatos, Mahdi Barzegar Khalilsarai, Gerhard Wunder
Submitted On:
27 November 2018 - 5:13pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

stefanatos_globalSIP2018.pdf

(7 downloads)

Subscribe

[1] Stelios Stefanatos, Mahdi Barzegar Khalilsarai, Gerhard Wunder, "Wideband Massive MIMO Channel Estimation via Sequential Atomic Norm Minimization", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3816. Accessed: Dec. 16, 2018.
@article{3816-18,
url = {http://sigport.org/3816},
author = {Stelios Stefanatos; Mahdi Barzegar Khalilsarai; Gerhard Wunder },
publisher = {IEEE SigPort},
title = {Wideband Massive MIMO Channel Estimation via Sequential Atomic Norm Minimization},
year = {2018} }
TY - EJOUR
T1 - Wideband Massive MIMO Channel Estimation via Sequential Atomic Norm Minimization
AU - Stelios Stefanatos; Mahdi Barzegar Khalilsarai; Gerhard Wunder
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3816
ER -
Stelios Stefanatos, Mahdi Barzegar Khalilsarai, Gerhard Wunder. (2018). Wideband Massive MIMO Channel Estimation via Sequential Atomic Norm Minimization. IEEE SigPort. http://sigport.org/3816
Stelios Stefanatos, Mahdi Barzegar Khalilsarai, Gerhard Wunder, 2018. Wideband Massive MIMO Channel Estimation via Sequential Atomic Norm Minimization. Available at: http://sigport.org/3816.
Stelios Stefanatos, Mahdi Barzegar Khalilsarai, Gerhard Wunder. (2018). "Wideband Massive MIMO Channel Estimation via Sequential Atomic Norm Minimization." Web.
1. Stelios Stefanatos, Mahdi Barzegar Khalilsarai, Gerhard Wunder. Wideband Massive MIMO Channel Estimation via Sequential Atomic Norm Minimization [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3816

The Greedy Dirichlet Process Filter - An Online Clustering Multi-Target Tracker


Reliable collision avoidance is one of the main requirements for autonomous driving.
Hence, it is important to correctly estimate the states of an unknown number of static and dynamic objects in real-time.
Here, data association is a major challenge for every multi-target tracker.
We propose a novel multi-target tracker called Greedy Dirichlet Process Filter (GDPF) based on the non-parametric Bayesian model called Dirichlet Processes and the fast posterior computation algorithm Sequential Updating and Greedy Search (SUGS).

Paper Details

Authors:
Patrick Burger, Hans-Joachim Wuensche
Submitted On:
27 November 2018 - 1:23pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

gdpf_presentation.zip

(11 downloads)

Subscribe

[1] Patrick Burger, Hans-Joachim Wuensche, "The Greedy Dirichlet Process Filter - An Online Clustering Multi-Target Tracker", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3815. Accessed: Dec. 16, 2018.
@article{3815-18,
url = {http://sigport.org/3815},
author = {Patrick Burger; Hans-Joachim Wuensche },
publisher = {IEEE SigPort},
title = {The Greedy Dirichlet Process Filter - An Online Clustering Multi-Target Tracker},
year = {2018} }
TY - EJOUR
T1 - The Greedy Dirichlet Process Filter - An Online Clustering Multi-Target Tracker
AU - Patrick Burger; Hans-Joachim Wuensche
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3815
ER -
Patrick Burger, Hans-Joachim Wuensche. (2018). The Greedy Dirichlet Process Filter - An Online Clustering Multi-Target Tracker. IEEE SigPort. http://sigport.org/3815
Patrick Burger, Hans-Joachim Wuensche, 2018. The Greedy Dirichlet Process Filter - An Online Clustering Multi-Target Tracker. Available at: http://sigport.org/3815.
Patrick Burger, Hans-Joachim Wuensche. (2018). "The Greedy Dirichlet Process Filter - An Online Clustering Multi-Target Tracker." Web.
1. Patrick Burger, Hans-Joachim Wuensche. The Greedy Dirichlet Process Filter - An Online Clustering Multi-Target Tracker [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3815

Sparse Discriminative Tensor Dictionary Learning for Object Classification

Paper Details

Authors:
Submitted On:
27 November 2018 - 12:57pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Sparse_Discriminative_Tensor_Dictionary_Learning_for_Object_Classification.pdf

(11 downloads)

Subscribe

[1] , "Sparse Discriminative Tensor Dictionary Learning for Object Classification", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3814. Accessed: Dec. 16, 2018.
@article{3814-18,
url = {http://sigport.org/3814},
author = { },
publisher = {IEEE SigPort},
title = {Sparse Discriminative Tensor Dictionary Learning for Object Classification},
year = {2018} }
TY - EJOUR
T1 - Sparse Discriminative Tensor Dictionary Learning for Object Classification
AU -
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3814
ER -
. (2018). Sparse Discriminative Tensor Dictionary Learning for Object Classification. IEEE SigPort. http://sigport.org/3814
, 2018. Sparse Discriminative Tensor Dictionary Learning for Object Classification. Available at: http://sigport.org/3814.
. (2018). "Sparse Discriminative Tensor Dictionary Learning for Object Classification." Web.
1. . Sparse Discriminative Tensor Dictionary Learning for Object Classification [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3814

OPPORTUNISTIC SCHEDULING IN UNDERLAY COGNITIVE RADIO BASED SYSTEMS: USER SELECTION PROBABILITY ANALYSIS

Paper Details

Authors:
Neeraj Varshney, Prabhat Kumar Sharma, M S Alouni
Submitted On:
27 November 2018 - 10:10am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

GlobalSIP.pdf

(450 downloads)

Subscribe

[1] Neeraj Varshney, Prabhat Kumar Sharma, M S Alouni, "OPPORTUNISTIC SCHEDULING IN UNDERLAY COGNITIVE RADIO BASED SYSTEMS: USER SELECTION PROBABILITY ANALYSIS", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3813. Accessed: Dec. 16, 2018.
@article{3813-18,
url = {http://sigport.org/3813},
author = {Neeraj Varshney; Prabhat Kumar Sharma; M S Alouni },
publisher = {IEEE SigPort},
title = {OPPORTUNISTIC SCHEDULING IN UNDERLAY COGNITIVE RADIO BASED SYSTEMS: USER SELECTION PROBABILITY ANALYSIS},
year = {2018} }
TY - EJOUR
T1 - OPPORTUNISTIC SCHEDULING IN UNDERLAY COGNITIVE RADIO BASED SYSTEMS: USER SELECTION PROBABILITY ANALYSIS
AU - Neeraj Varshney; Prabhat Kumar Sharma; M S Alouni
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3813
ER -
Neeraj Varshney, Prabhat Kumar Sharma, M S Alouni. (2018). OPPORTUNISTIC SCHEDULING IN UNDERLAY COGNITIVE RADIO BASED SYSTEMS: USER SELECTION PROBABILITY ANALYSIS. IEEE SigPort. http://sigport.org/3813
Neeraj Varshney, Prabhat Kumar Sharma, M S Alouni, 2018. OPPORTUNISTIC SCHEDULING IN UNDERLAY COGNITIVE RADIO BASED SYSTEMS: USER SELECTION PROBABILITY ANALYSIS. Available at: http://sigport.org/3813.
Neeraj Varshney, Prabhat Kumar Sharma, M S Alouni. (2018). "OPPORTUNISTIC SCHEDULING IN UNDERLAY COGNITIVE RADIO BASED SYSTEMS: USER SELECTION PROBABILITY ANALYSIS." Web.
1. Neeraj Varshney, Prabhat Kumar Sharma, M S Alouni. OPPORTUNISTIC SCHEDULING IN UNDERLAY COGNITIVE RADIO BASED SYSTEMS: USER SELECTION PROBABILITY ANALYSIS [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3813

MODELING SIGNALS OVER DIRECTED GRAPHS THROUGH FILTERING


In this paper, we discuss the problem of modeling a graph signal on a directed graph when observing only partially the graph signal. The graph signal is recovered using a learned graph filter. The novelty is to use the random walk operator associated to an ergodic random walk on the graph, so as to define and learn a graph filter, expressed as a polynomial of this operator. Through the study of different cases, we show the efficiency of the signal modeling using the random walk operator compared to existing methods using the adjacency matrix or ignoring the directions in the graph.

Paper Details

Authors:
Harry Sevi, Gabriel Rilling, Pierre Borgnat
Submitted On:
27 November 2018 - 9:53am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Borgnat_talk_GlobalSIP_2018.pdf

(9 downloads)

Keywords

Additional Categories

Subscribe

[1] Harry Sevi, Gabriel Rilling, Pierre Borgnat, "MODELING SIGNALS OVER DIRECTED GRAPHS THROUGH FILTERING", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3812. Accessed: Dec. 16, 2018.
@article{3812-18,
url = {http://sigport.org/3812},
author = {Harry Sevi; Gabriel Rilling; Pierre Borgnat },
publisher = {IEEE SigPort},
title = {MODELING SIGNALS OVER DIRECTED GRAPHS THROUGH FILTERING},
year = {2018} }
TY - EJOUR
T1 - MODELING SIGNALS OVER DIRECTED GRAPHS THROUGH FILTERING
AU - Harry Sevi; Gabriel Rilling; Pierre Borgnat
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3812
ER -
Harry Sevi, Gabriel Rilling, Pierre Borgnat. (2018). MODELING SIGNALS OVER DIRECTED GRAPHS THROUGH FILTERING. IEEE SigPort. http://sigport.org/3812
Harry Sevi, Gabriel Rilling, Pierre Borgnat, 2018. MODELING SIGNALS OVER DIRECTED GRAPHS THROUGH FILTERING. Available at: http://sigport.org/3812.
Harry Sevi, Gabriel Rilling, Pierre Borgnat. (2018). "MODELING SIGNALS OVER DIRECTED GRAPHS THROUGH FILTERING." Web.
1. Harry Sevi, Gabriel Rilling, Pierre Borgnat. MODELING SIGNALS OVER DIRECTED GRAPHS THROUGH FILTERING [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3812

Polar Feature Based Deep Architectures for Automatic Modulation Classification Considering Channel Fading


To develop intelligent receivers, automatic modulation classification (AMC) plays an important role for better spectrum utilization. The emerging deep learning (DL) technique has received much attention in AMC due to its superior performance in classifying data with deep structure. In this work, a novel polar-based deep learning architecture with channel compensation network (CCN) is proposed. Our test results show that learning features from polar domain (r-θ) can improve recognition accuracy by 5% and reduce training overhead by 48%.

Paper Details

Authors:
Ching-Chun Liao, Chun-Hsiang Chen, An-Yeu (Andy) Wu
Submitted On:
27 November 2018 - 6:59am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

2018 GlobalSIP Oral.pdf

(12 downloads)

Subscribe

[1] Ching-Chun Liao, Chun-Hsiang Chen, An-Yeu (Andy) Wu, "Polar Feature Based Deep Architectures for Automatic Modulation Classification Considering Channel Fading", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3811. Accessed: Dec. 16, 2018.
@article{3811-18,
url = {http://sigport.org/3811},
author = {Ching-Chun Liao; Chun-Hsiang Chen; An-Yeu (Andy) Wu },
publisher = {IEEE SigPort},
title = {Polar Feature Based Deep Architectures for Automatic Modulation Classification Considering Channel Fading},
year = {2018} }
TY - EJOUR
T1 - Polar Feature Based Deep Architectures for Automatic Modulation Classification Considering Channel Fading
AU - Ching-Chun Liao; Chun-Hsiang Chen; An-Yeu (Andy) Wu
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3811
ER -
Ching-Chun Liao, Chun-Hsiang Chen, An-Yeu (Andy) Wu. (2018). Polar Feature Based Deep Architectures for Automatic Modulation Classification Considering Channel Fading. IEEE SigPort. http://sigport.org/3811
Ching-Chun Liao, Chun-Hsiang Chen, An-Yeu (Andy) Wu, 2018. Polar Feature Based Deep Architectures for Automatic Modulation Classification Considering Channel Fading. Available at: http://sigport.org/3811.
Ching-Chun Liao, Chun-Hsiang Chen, An-Yeu (Andy) Wu. (2018). "Polar Feature Based Deep Architectures for Automatic Modulation Classification Considering Channel Fading." Web.
1. Ching-Chun Liao, Chun-Hsiang Chen, An-Yeu (Andy) Wu. Polar Feature Based Deep Architectures for Automatic Modulation Classification Considering Channel Fading [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3811

Cyber attacks on Smart Energy Grids Using Generative Adversarial Networks


Recently, cyber-attacks to smart energy grid has become a critical subject for Energy System Operators (ESOs). To keep the energy grid cyber-secured, the attacker’s behavior, resources and goals must be modeled properly. Then, the counter-measurement actions can be designed based on the attacker's model. In this paper, a new zero-sum game based on the Generative Adversarial Networks (GANs) is presented. The attacker to energy smart grid pursues two objects.

Paper Details

Authors:
Heidar Malki, Zhu Han
Submitted On:
27 November 2018 - 5:25am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

poster_GlobalSIP.pdf

(338 downloads)

Subscribe

[1] Heidar Malki, Zhu Han, "Cyber attacks on Smart Energy Grids Using Generative Adversarial Networks", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3809. Accessed: Dec. 16, 2018.
@article{3809-18,
url = {http://sigport.org/3809},
author = {Heidar Malki; Zhu Han },
publisher = {IEEE SigPort},
title = {Cyber attacks on Smart Energy Grids Using Generative Adversarial Networks},
year = {2018} }
TY - EJOUR
T1 - Cyber attacks on Smart Energy Grids Using Generative Adversarial Networks
AU - Heidar Malki; Zhu Han
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3809
ER -
Heidar Malki, Zhu Han. (2018). Cyber attacks on Smart Energy Grids Using Generative Adversarial Networks. IEEE SigPort. http://sigport.org/3809
Heidar Malki, Zhu Han, 2018. Cyber attacks on Smart Energy Grids Using Generative Adversarial Networks. Available at: http://sigport.org/3809.
Heidar Malki, Zhu Han. (2018). "Cyber attacks on Smart Energy Grids Using Generative Adversarial Networks." Web.
1. Heidar Malki, Zhu Han. Cyber attacks on Smart Energy Grids Using Generative Adversarial Networks [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3809

Pages