

Automatic Mandarin Prosody Boundary Detecting Based on Tone **Nucleus Features and DNN Model**

Ju Lin, Yanlu Xie, Wei Zhang, Jinsong Zhang

Speech Acquisition and Intelligent Technology (SAIT) Lab, Beijing Language and Culture University

1. Overview

2.Tone Nucleus Model

Problem:

Automatic detection of Mandarin prosody boundary. Method:

Detecting prosody boundary based on tone nucleus features and Deep Neural Network (DNN)

2.1 Ton	e nucleus		
transition	Tone nucleus	transition	F
	Syllable F0 contour		

2.2 Tone nucleus and prosody boundary

model.

> This method firstly calculated the boundary-related parameters by applying the tone nucleus features.

> Then, the parameters were modeled by DNN.

Conclusion:

Considering interaction between adjacent tones, the method of using tone nucleus model to extract boundary-related parameters is effective.

1)Tone nucleus denotes the F0 target and serves as the primary acoustic cue for tone perception.

2)Articulatory transitions are the F0 variations occurring as the transitions to or from the tonal targets.

Illustration of an F0 contour of adjacent "Tone 4 Tone 1", with a prosodic phrase boundary between them

2.3 Tone nucleus detection

3. DNN Model

4. Acoustic features

Duration		Pitch			Energy	
 SiID_f: The duration of silence after the converse of the current syllable. SylDur: The duration of the current syllable. SylDurRatio_foll: The ratio of the duration of the current syllable and that of its following syllable. SylDurRatio_pre The ratio of the duration of the current syllable. SylDurRatio_pre The ratio of the duration of the current syllable. 	iOn Ur-1) Fitting to nucleus with was used ture.tion E.2) PMax: rent tone ri 3) PMin: Te rent tone ri 4) PRange tone nucle 5) PMean rent tone ri 6) PMRation PMean and 7) PRation point in cut following si 8) Delta_ficurrent sy syllable's PM	he pitch contour of cur ith f(x)=a+bx+cx2 and to represent the pitch The maximum F0 value nucleus. The minimum F0 value nucleus. e: The F0 range of the eus. : The mean F0 value of nucleus. io: The ratio of current of the following syllable : The ratio of the F0 of irrent tone nucleus and syllable. Max: The difference be llable's PMax and the PMax. Vin: The difference be llable's PMin and the following and the fin.	rrent tone {a, b, c} contour fea- e of the cur- e of the cur- e current of the cur- t syllable's e's PMean. f the last d that of the etween the following etween the following syl-	1) EgMa energy tone nuc 2) EgMi energy tone nuc 3) EgRa range of nucleus 4) EgMa ergy val tone nuc 5) EgRa current and the EaMear	ax: The maxim value in the cu cleus. in: The minimuvalue in the cu cleus. ange: The ener f the current to ange: The mean f the current to cleus. atio: The mean cleus. atio: The ratio syllable's EgM following sylla	num rrent im rrent rgy ne nen- ent

Total	B0	B1	B2	B3	B4	
87628	61518	16334	8442	7449	4072	
100%	62.9%	16.7%	8.6%	7.6%	4.2%	
5.2 Experiment Setup						
1) A 20-unit input layer.						
2) 3 hidden layers, each layer consists of 512 sig-						
mold un	Its.					

3) An output layer consists of 5 softmax units.

5.2 Experiment results					
Systen	n B0	B1	B2	B3	B4
SY-CAF	RT 90.9	48.6	50.9	80.8	61.7
SY-DNI	N 96.1	21.2	44.1	75.3	74.6
TN-DNI	N 96.1	22.6	47.6	83.6	75.1
System	SY-C	ART	SY-DN	IN TN-	DNN
Accurac	y 78.3		76.5	77.3	34

SY: syllables, TN: tone nucleus

This paper proposed a method of automatic prosody boundary detecting based on acoustic features of tone nucleus and **DNN model**, the experimental results demonstrate that the method is effective.