

Reference Receiver Enabled Digital Cancellation of Nonlinear Out-of-band Blocker Distortion in Wideband Receivers

Jaakko Marttila*, Markus Allén*, Marko Kosunen[†], Kari Stadius[†], Jussi Ryynänen[†] and Mikko Valkama*

* Department of Electronics and Communications Engineering, Tampere University of Technology P.O. Box 692, FI-33101 Tampere, Finland {jaakko.marttila, markus.allen, mikko.e.valkama}@tut.fi

† Department of Micro- and Nanosciences, Aalto University School of Electrical Engineering P.O. Box 13000, FI-02150 Espoo, Finland {marko.kosunen, kari.stadius, jussi.ryynanen}@aalto.fi

Outline of the Presentation

- Blocker and Nonlinearity Illustrations
- Considerations on 5G Systems
- Current Systems Example
- Reference Receiver Enabled Cancellation
- Conclusions

Inband Blockers

- Problem: the stong carriers **inside** the digital RX band create nonlinear distortion, interfering weaker carriers
 - Multiple solutions presented in the current literature

Out-of-Band Blockers

- Problem: the stong carriers **outside** the digital RX band enter the analog RX creating nonlinear distortion, interfering weaker carriers
 - Few solutions presented in the current literature

E. Keehr and A. Hajimiri, "Equalization of third-order intermodulation products in wideband direct conversion receivers," *IEEE J. Solid-State Circuits*, vol. 43, no. 12, pp. 2853–2867, Dec. 2008.

E. Keehr and A. Hajimiri, "Successive regeneration and adaptive cancellation of higher order intermodulation products in RF receivers," *IEEE Trans. Microw. Theory Tech.*, vol. 59, no. 5, pp. 1379–1396, May 2011.

IB and OOB Blockers

- Problem: the stong carriers both inside and outside the digital RX band enter the analog RX creating nonlinear distortion, interfering weaker carriers
 - IMD between IB and OOB blockers can't be modeled separately

5G

• In FDD, the downlink (DL) and uplink (UL) bands tend to be close

- Expected to continue in the future 5G systems, in terms of flexible duplexing, especially at carrier frequencies below 6 GHz
- Improvements in RX blocker tolerance allow more <u>flexibility in the analog</u> <u>component design and increased reception dynamic range</u>
 - Expected to be critical in the emerging 5G systems, with increased requirements for flexible duplexing and RF spectrum use
- For example, an UL BS RX can suffer from nonlinear distortion caused by co-located DL transmission entering the low-noise amplifier (LNA) and the distortion falling inside the UL band

TAMPERE UNIVERSITY OF TECHNOLO

Current Systems Example

7

Reference Receiver Enabled Digital Cancellation

Applied Cascaded Nonliearity Modelling

J. Marttila, M. Allén, M. Valkama, M. Kosunen, K. Stadius, and J. Ryynänen, "Reference receiver enhanced digital linearization of wideband direct-conversion receivers," *IEEE Trans. Microw. Theory Tech.*, 2016, accepted.

9

Reference Receiver Enabled <u>Digital</u> <u>Cancellation</u>

Single-RX inband linearization principle presented in M. Allén, J. Marttila, M. Valkama, S. Singh, M. Epp, and W. Schlecker, "Digital full-band linearization of wideband direct-conversion receiver for radar and communications applications," in *Proc. 49th Asilomar Conference on Signals, Systems and Computers*, Pacific Grove, CA, Nov. 2015, pp.1361–1368.

Measurement Setup

- Four carriers on LTE band 3 DL and UL duplexing bands
 - Two weak UL carriers
 - Two strong carriers; one UL, one DL (mimicing a nearby interfering BS transmitter)
- Split to
 - Main RX (100 MHz bandwidth) receiving the UL band
 - ref-RX (100 MHz bandwidth) tuned for the DL band
- HD Communications Corp. HD24089 wideband LNA
 - 22 dB gain, -7 dB IIP3
- Pre-commercial v. of AD9371
 dual RX EVB

Measurement Results

TAMPERE UNIVERSITY OF TECHNOLOGY

6.12.2016 12

Measurement Results

Measurement Results

- With -27 dBm blocker powers
 - SNDRs improved
 - From 13 dB to 19 dB (5 MHz)
 - From 11 dB to 20 dB (25 MHz)
 - SERs improved
 - From 13 % to 0.01 % (5 MHz)
 - From 5 % and 0.03 % (25 MHz)
- 14 dB SNDR and 1 % SER maintained with 7 dB and 8 dB higher blocker powers

Conclusions

- The proposed solution
 - Combines main RX observation with OOB blockers captured by a ref-RX
 - Regenerates an <u>estimate of nonlinear distortion</u> induced by the RX analog front-end components
 - Estimate is used to cancel the distortion present in the main RX observation
- Improvement in RX blocker tolerance allows more flexibility in the analog component design and increased reception dynamic range
 - expected to be critical in the emerging 5G systems, with increased requirements for flexible duplexing and RF spectrum use, especially at carriers below 6 GHz