Surface-based Background Completion in 3D Scene

Po-Jen Lail, Yung-Lin Huang ${ }^{2}$, Shao-Yi Chien ${ }^{3}$
${ }^{1}$ Department of Electrical Engineering
${ }^{2}$ Graduate Institute of Networking and Multimedia
${ }^{3}$ Graduate Institute of Electronics Engineering and Department of Electrical Engineering
bob71735@gmail.com¹, cary@media.ee.ntu.edu.tw², sychien@ntu.edu.tw³

Proposed System

A surface-based background completion in 3D scene

Edge Restoration

\checkmark Generate the "edge map"

- Computed automatically using a combination of gradient- and surfacebased measures
- Serve as an edge-preserving texture suppression filter
\checkmark Determine the order of patch filling
- Use the data term, which gives preference to linear structure.

$$
D(p)=\frac{\left|I_{p}^{\perp} \cdot n_{p}\right|}{\alpha}
$$

Depth \& RGB Inpainting

\checkmark RGB inpainting with inpainted depth
ㅁ A more precise similarity calculation between square depth patches
\checkmark Concern of parameters and weight

- Searching range, patch size
- Weight of depth and color
\checkmark Smooth the boundary between patches
- Use Poisson image editing to reduce artifacts caused by overlap of patches. $\min _{f} \iint_{\Omega}|\nabla f-v|^{2}$ with $\left.f\right|_{\partial \Omega}=\left.f^{*}\right|_{\partial \Omega}$

Experimental Results

