Surface-based Background Completion in 3D Scene

Inpainted RGB

Inpainted depth

Po-Jen Lai¹, Yung-Lin Huang², Shao-Yi Chien³ ¹ Department of Electrical Engineering ² Graduate Institute of Networking and Multimedia ³ Graduate Institute of Electronics Engineering and Department of Electrical Engineering National Taiwan University bob71735@gmail.com¹, cary@media.ee.ntu.edu.tw², sychien@ntu.edu.tw³

Experimental Results

Edge Restoration

Computed automatically using a combination of gradient- and surface-Serve as an edge-preserving texture

Use the data term, which gives preference to linear structure.

Reconstructed 3D point cloud models from NYU datasets

Built from single-view RGB-D photos Achieve a more comprehensive visualization

Original

inpainted depth

original surface map

original depth

Depth & RGB Inpainting

\checkmark RGB inpainting with inpainted depth A more precise similarity calculation between square depth patches

Concern of parameters and weight

Searching range, patch size Weight of depth and color

\checkmark Smooth the boundary between patches

Use Poisson image editing to reduce artifacts caused by overlap of patches.

 $\min_{f} \iint_{\Omega} |\nabla f - v|^2 \quad \text{with} \quad f|_{\partial \Omega} = f^*|_{\partial \Omega}$

The ability of our approach to produce ideal results

Restored background

Reconstructed 3D model