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Introduction 
 
What is Estimation? 
 
Estimation refers to accurately finding the values of 
parameters of interest from the observed data which consist 
of two components, viz., signal and noise. 
 
A generic model for estimation of a scalar  is: 
 

 
 

where  is the observation vector, signal  is a known 
function of  and noise  is an additive random process. 
 
 

The estimation problem is to find  given . 
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Why Estimation is Needed? 
 
Many science and engineering problems can be boiled down 
to parameter estimation: 
 
 Radar Ranging 
Suppose a radar system transmits an electromagnetic pulse 

, which is then reflected by an object at a range of , 
causing an echo  to be received.  
 
The received  is scaled, delayed and noisy version of : 
 

 
 

It is clear that the time delay  is round trip propagation 
time. 
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Via estimating ,  can be obtained using the relationship: 
 

 
 

where  is the signal propagation speed. 
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 Mobile Positioning 

 
If we know one-way propagation time of the signal 
traveling between mobile station and base station (BS), 
then the target position can be obtained using three BSs. 
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 Speech Analysis 

 
For a voiced speech, it can be modeled as a periodic signal 
and it is important to estimate its pitch or fundamental 
frequency for analysis. 
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 Image Processing 
Estimation of the position and orientation of an object from 
a camera image is useful when using a robot to pick it up, 
e.g., bomb-disposal. 
 
 Biomedical Engineering 
Estimation the heart rate of a fetus and the difficulty is that 
the measurements are corrupted by the mother’s heart beat 
as well. 
 
 Seismology 
Estimation of the underground distance of an oil deposit 
based on sound reflection due to the different densities of 
oil and rock layers. 
 
 Astronomy 
Estimation of the periods of orbits. 
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How to Perform Estimation? 
 
Least squares (LS) and maximum likelihood (ML) are two 
standard estimation approaches. 
 
Consider the model of . 
 
The LS estimator does not require the probability density 
function (PDF) of , and its estimate is obtained by 
minimizing a sum of squared error: 
 

 

where 
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To produce the ML estimator, the PDF of  is required. 
 
Assuming that  is a zero-mean Gaussian noise, the PDF of 
the observed vector , which is parameterized by , is 
 

 

where 
 

 

The ML estimate is: 
 

 
 

When  is white with variance , the PDF reduces to  
 

 
 

ML estimate is reduced to LS solution. 
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How to Assess Estimators? 
 
Two standard performance measures for assessing accuracy 
of an estimator are bias and mean square error (MSE): 
 
   
and 
   
 
It is desired that  or , indicating that the 
estimator is unbiased, and MSE is as small as possible. 
 
For an unbiased estimator, MSE is equal to variance: 
 

 
 

In general: 
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Consider a simple problem of estimating a DC level  from: 
 
   
 
where  has mean 0 and variance . 
 
We easily suggest three estimators: 
 

 
 

 

 

 

 

H. C. So                                                                        Page 12                                       May 2015 



It is easy to show: 
 

;   

 

 

;   

 

;   

 
 is the best among the three because it has zero bias and 

minimum variance. 
 
 Is  optimum? 
 How to compute bias and MSE for more general cases? 
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Cramér-Rao Lower Bound (CRLB) 
 
CRLB is performance bound in terms of minimum achievable 
variance provided by any unbiased estimators. 
 
Its derivation requires knowledge of the noise PDF and the 
PDF must have closed-form. 
 
Although there are other variance bounds, CRLB is simplest. 
 
Suppose the PDF of  where , 
is . 
 
The CRLB for  can be obtained in two steps: 
 

 Compute the Fisher information matrix . 
 CRLB for  is the  entry of ,  . 
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 has the form of: 
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Consider  with zero-mean white Gaussian noise: 
 

 

 

That is,  is the optimum estimator for . 
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Bias and Mean Square Error Formulas for Scalar 
 
Recall the signal model: 
 

 

 
Suppose the scalar  is estimated by minimizing a 
differentiable cost function constructed from , : 
 
   
This implies 
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At small estimation error conditions,  is close to . Applying 
Tayler series expansion yields: 
 
   
 
If  is sufficiently smooth around , then 
 
   
 
Hence 

 
 

  

Similarly,  
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Note: 
 
When  is a quadratic function: 
 

  and   

 

 
When ,  is an unbiased estimate of . 
 
For unbiased estimator: 
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Examples for Scalar Estimation 
 
For simplicity, we assume that the noise is white Gaussian 
process with variance . 
 
DC Level Estimation  
 
Recall the model: 
 

 
 
Using the LS approach, the cost function to be minimized is 
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To apply the bias and MSE formulas, we compute: 
 

   

 

 

and 

   

Hence: 
 

     and     
 

which align with previous analysis. 
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Time-Difference-of-Arrival Estimation 
 
The simplest model is to estimate the time-difference-of-
arrival  between two signals: 
 
   
 
where ,  and  are independent zero-mean white 
Gaussian variables with ,  . 
 
It is clear that  is most similar to 

. As a result,  can be estimated by maximizing the 
cross-correlation between  and : 
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However,  is generally not an integer and thus  is a 
continuous function of .  
 
Using the convolution theorem,  has the form of 
 

  

 
Applying the bias and MSE formulas, we obtain: 
 

 
and 

   

 
which is also the CRLB. 
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Frequency Estimation of a Complex Sinusoid 
 
The signal model is: 
 

 
 

where ,  and . 
 

A conventional approach for estimating  is to search the 
periodogram peak: 
 

 

Applying the bias and MSE formulas, we obtain: 
 

  and  
 

which is also the CRLB. 
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Frequency Estimation of a Real Sinusoid 
 
The signal model is: 
 

 
 

where ,  and  
 
According to the linear prediction property: 
 

 
 
A LS cost function for estimating  is then: 
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The LS estimate of  is: 
 

   

 
Hence the frequency estimate is 
 

  

  
which is known as the modified covariance method. 
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Applying the bias and MSE formulas, we obtain: 
 
   
and 
 

   

 
if  is sufficiently large. 
 
Hence 
   

 
where . 
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With tedious calculation, we have 
 

 

Since 

 

We have: 
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Bias and Mean Square Error Formulas for Vector 
 
For estimation of a vector  from minimizing , the 
formulas are generalized as follows:  
 

   
and 
   
 

where  is the gradient vector and  is the 
Hessian matrix: 
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As a result, 
 
   
 
Similarly, the covariance matrix is: 
 
   
 

The MSE of  is given by  entry of  
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Examples for Vector Estimation 
 
Estimation of a Linear Model 
 

The linear data model is: 
 

   
 

where  is known,  is unknown vector, and .  
 

Employing , the weighted LS cost function is: 
 

   
 

Applying the bias and MSE formulas, we obtain: 
 

   and   
 

These align with the best linear unbiased estimator (BLUE). 
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Parameter Estimation of a Real Sinusoid 
 

The signal model is: 
 

 
 
where ,  and , while  is a white 
Gaussian process with variance . 
 
According to ML or LS, we construct: 
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Applying the bias and MSE formulas, we obtain: 
 

 

 

 

 

  
which is the inverse of the Fisher information matrix. 
 
That is, the estimator provides the optimum performance. 
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Localization using Range Measurements 
 
Consider positioning of a source at  by  
sensors at known coordinates , .  
 
If we have the one-way propagation time measurements, 
they can be easily converted to ranges:  
 
   
 
where  and  is white. 
 
The ML or LS cost function is 
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To determine the bias and MSE, the steps include: 
 

   

 
because . 
 
Similarly,  
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As a result, 
 

 
 
With tedious calculation, we have 
 

   

 
which is the inverse of the Fisher information matrix. 
 
That is, the estimator provides the optimum performance. 
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Apart from the nonlinear approach,  can be linearized: 
 

 
 
where 

 
 

 
Hence the signal model is now linear: 
 

 
 
where 
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For sufficiently small noise conditions, we have  
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The weighted LS cost function to be minimized is 
 

 
 
and the estimate is 
 

 

 
Applying the bias and MSE formulas, we obtain: 
 

 
 

 
 

MSEs of  and  are given by  and  entries of . 
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To achieve higher accuracy, the information of  should be 
utilized, which results in a constrained optimization problem: 
 
   

 
The solution can be derived using the method of Lagrange 
multipliers. 
 
To analyze the performance, the constrained problem can 
be converted to an unconstrained one by putting the 
relation of  into : 
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Applying the bias and MSE formulas, we obtain: 
 

 
 

   

 
which is the inverse of the Fisher information matrix. 
 
That is, the estimator also provides optimum performance. 
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