

Atomic Norm Minimization Based Range-Direction Indication For Frequency Diverse Array: A Matrix Completion Perspective

Contribution

Purpose: Achieve range-direction indication in Frequency Diverse Array (FDA) without coupling and high sidelobe.

Key idea:

- \succ Regard the FDA as a 2-D sampling on the spatialfrequency domain;
- > Use Atomic Norm Minimization (ANM) to complete the missing observation.

D Performance:

- \succ Achieve a 2-D-sinc-like structure beampattern;
- Indicate targets successfully and accurately.

General FDA model & Problem

In the FDA, the carrier frequency of the transceiver is assigned as: $f_n = f_0 + m_n \Delta f$

 f_c : the center frequency, Δf : the frequency increment step, and m_n : the frequency increment sequence.

The transmit waveform of the *n*th antenna is

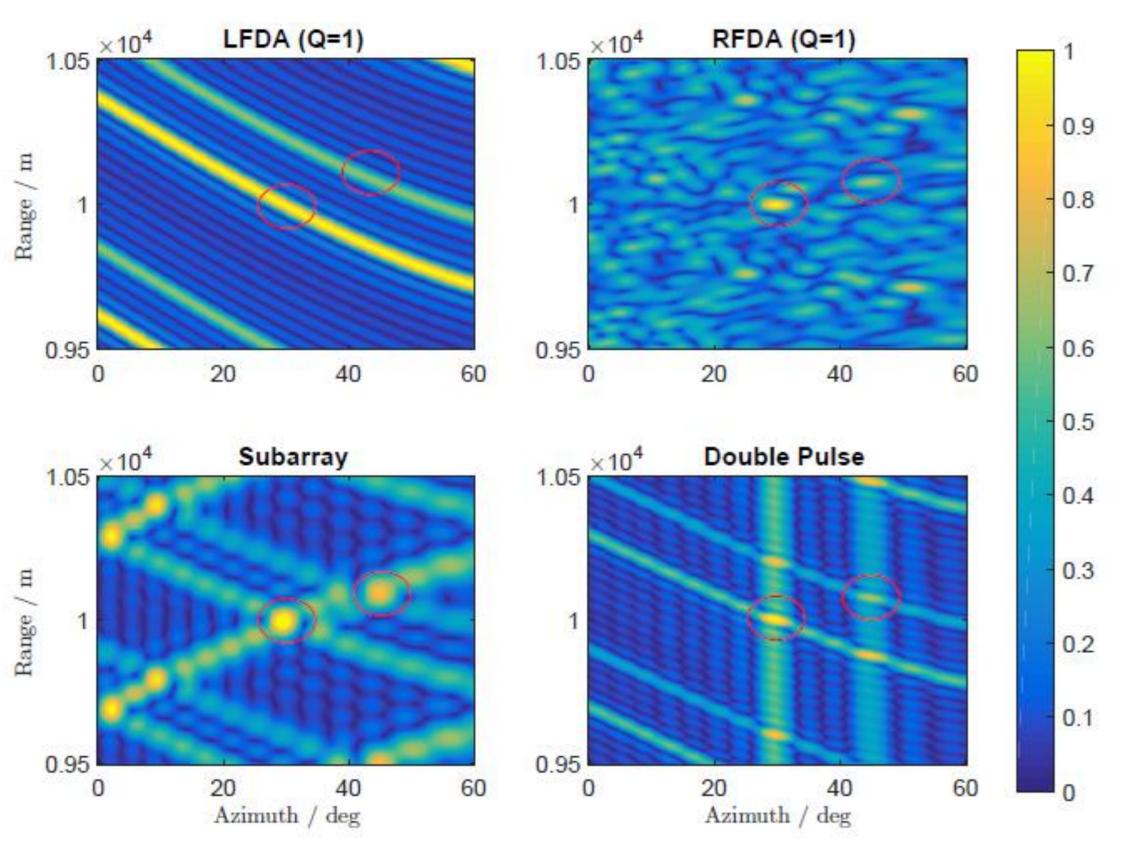
 $s_{tn} = \exp\{j2\pi(f_0 + m_n\Delta f)t\}.$

By different arrangement of m_n , we can achieve the different existing FDA method.

• LFDA (Linear FDA): $m_n = [0, 1, 2, ..., N - 1]$

• **RFDA** (Random FDA): m_n is a random variable.

- Subarray FDA: $m_n = [0, 1, ..., \frac{N-1}{2}, \frac{N-3}{2}, ..., 1, 0]$
- **Double Pulse :** $m_n = [0\&0,1\&0,...,N-1\&0]$
- > There are two targets and their indications are circled in the figure below.

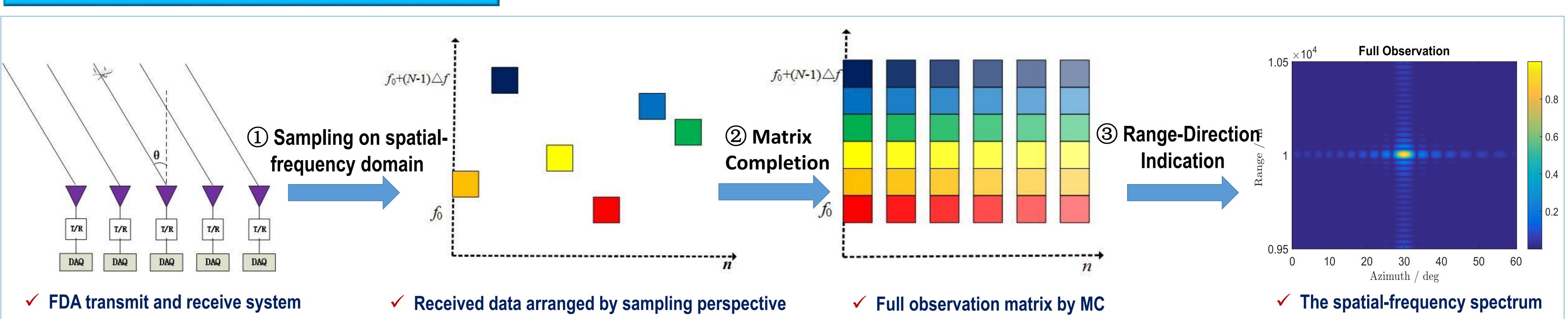


The existing decoupling methods suffer from coupling ridge residual or high sidelobe base problems.

• When there multiple targets and even strong and weak targets, all the existing methods fails.

Intelligent Sensing Lab, Department of Electronic Engineering, Tsinghua University

Method & Framework



Progress & Algorithm

(1) Sampling on spatial-frequency domain

We regard FDA as the joint sampling of the targets' rangedirection information on the 2-D spatial-frequency domain

$$y = \mathcal{P}_{\mathcal{T}}(X)$$

y: FDA received data, $\mathcal{P}_{\mathcal{T}}(\cdot)$: the orthogonal projection operator onto the subspace of vector supported on \mathcal{T} . Define \mathcal{T} on the frequency diverse code m_n as

$$\mathcal{T} = \{ (n-1)M + m_n | n = 1, 2, ..., N \}$$

All the existing FDA methods can be regarded as sampling on the 2-D spatial-frequency domain just with different sampling type.

X: the full observation matrix which can be formulated as each antenna transmits all the *M* monotones whose carrier frequency ranges from f_0 to $f_0 + (M - 1)\Delta f$, and afterwards receives all the reflected echoes with an orthogonal waveform design,

$$\mathbf{X} = \sum_{i=1}^{n} \boldsymbol{\alpha}_{r}(f_{ri}) \boldsymbol{\alpha}_{s}(f_{si})^{T}$$

where

 $\boldsymbol{\alpha}_{r}(f_{ri}) = \left[1, e^{-j2\pi f_{ri}}, e^{-j2\pi 2f_{ri}}, \dots, e^{-j2\pi (M-1)f_{ri}}\right]^{T}$ and

$$\boldsymbol{\alpha}_{s}(f_{si}) = \left[1, e^{-j2\pi f_{si}}, e^{-j2\pi 2f_{si}}, \dots, e^{-j2\pi (M-1)f_{si}}\right]^{T}$$

 \blacklozenge X \rightarrow two-dimension harmonic structure .

2 Matrix Completion by Atomic Norm Minimization

Adopt Atomic Norm Minimization (ANM) to reconstruct the full matrix X. The corresponding atomic set is defined as the collection of all the 2-D complex sinusoids :

 $\mathcal{A} \triangleq \{ \boldsymbol{c}(f_r, f_s) = \boldsymbol{\alpha}_r(f_r) \otimes \boldsymbol{\alpha}_s(f_s) | f_r \in (0, 1], f_s \in (0, 1] \}$ The atomic norm is defined as

$$\|\boldsymbol{x}\|_{\mathcal{A}} \triangleq \inf_{\boldsymbol{c}(f_{ri},f_{si})\in\mathcal{A}} \left\{ \sum_{i} |d_{i}| : \boldsymbol{x} = \sum_{i} d_{i}\boldsymbol{c}(f_{ri},f_{si}) \right\}$$

Lei Wang, Yimin Liu

So the reconstruction of the full matrix **X** can be arranged as the following optimization problem

$$\widehat{\mathbf{x}} = \arg \min \|\mathbf{x}\|_{\mathcal{A}} \quad s.t. \quad \mathcal{P}_T(\mathbf{x}) = \mathbf{y}$$

where x = vec(X). This problem can be solved by a semidefinite programming [Chi, 2014]

$$\begin{aligned} \boldsymbol{x} &= \arg\min_{\boldsymbol{T}, \, \boldsymbol{x}, \, t} \, \frac{1}{2} tr(\boldsymbol{S}(\boldsymbol{T})) + \frac{1}{2} t\\ \text{subject to} \quad \begin{bmatrix} \boldsymbol{S}(\boldsymbol{T}) & \boldsymbol{x} \\ \boldsymbol{x}^* & t \end{bmatrix} \ge 0\\ \mathcal{P}_T(\boldsymbol{x}) &= \boldsymbol{y} \end{aligned}$$

S(T): a two-fold Toeplitz structure.

③ Range-Direction Indication Using the Full Data

Then we use the full observation vector \boldsymbol{x} we obtained to indicate the range and direction of the targets. For the single-snapshot case (termed the Single Measurement Vector (SMV) scenario), the maximum likelihood estimation can be obtained by a replicacorrelator. So the spatial-frequency spectrum can be estimated as

$$\boldsymbol{p}(\boldsymbol{r},\boldsymbol{\theta}) = \boldsymbol{c}(f_r,f_s)^H \boldsymbol{x}$$

If there are L > 1 snapshots, we can formed all the full vector x(l)as a Multiple Measure Vector (MMV) scenario. And then we can use some methods such as MUSIC and Capon to achieve a super resolution

$$\boldsymbol{P}(\boldsymbol{r},\boldsymbol{\theta}) = \frac{1}{\boldsymbol{c}(f_r,f_s)^H \boldsymbol{R}^{-1} \boldsymbol{c}(f_r,f_s)}$$

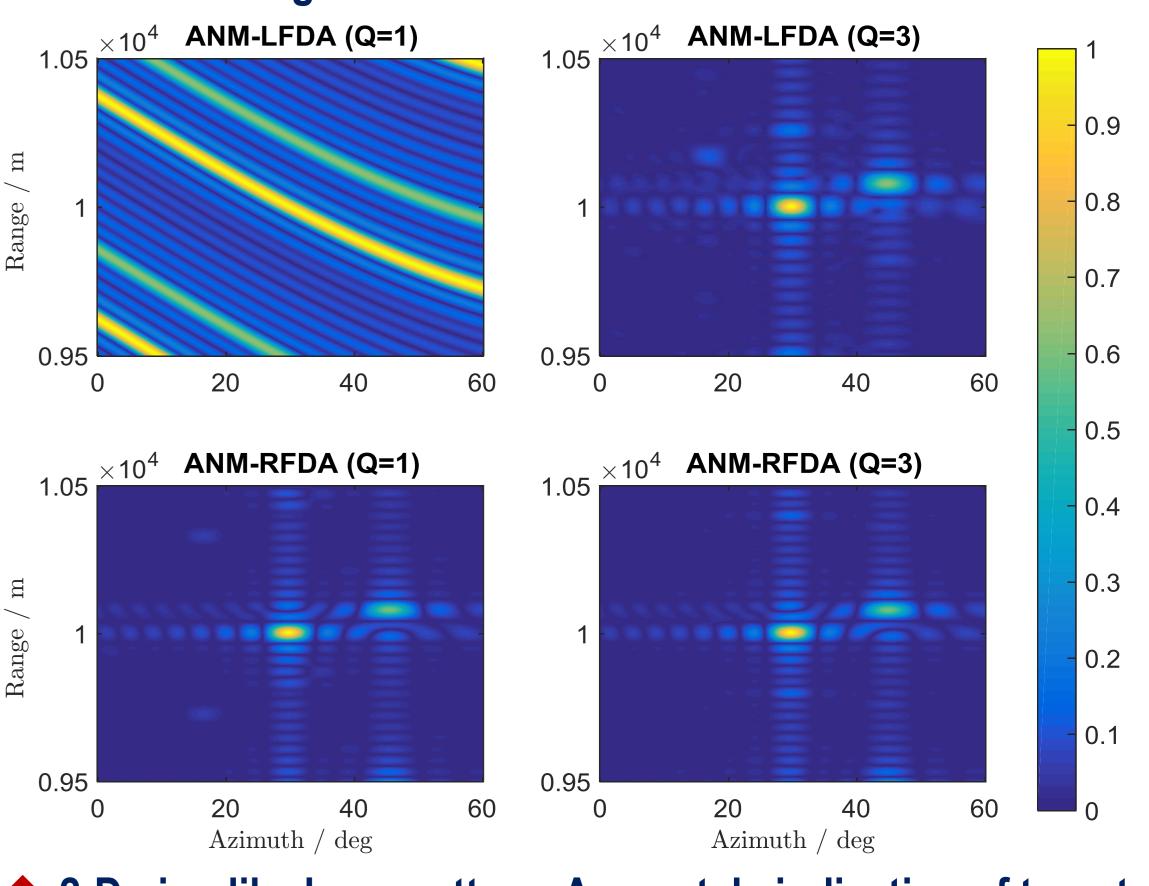
R: the estimation of covariance matrix.

Both the replica-correlation method and the super resolution method avoid the off-grid problem with a more stable performance.

The corresponding beampattern based on the full observation data x has 2-D-sinc-like structure. The coupling and high sidelobe problems are avoided.

Simulation Results

FDA consists of N = 16 antennas, $f_0 = 9GHz$, $\Delta f = 200$ kHz, Q = 1 for narrowband case and Q = 3 for broadband case. Two targets: $r_1 = 10km$, $\theta_1 = 30^\circ$ and $r_2 = 10km +$ 75m, $\theta_2 = 45^\circ$. The power level of Target 1 is 5 dB larger than that of Target 2.



• 2-D-sinc-like beampattern; Accurately indication of targets.

Table 1. Reconstruction NMSE of ANM in FDA.						
	K=1	K=2	K=3	K=4	K=5	
LFDA(Q=1)	0.9747	0.9741	0.9733	0.9718	0.9576	
subarray	0.9151	0.9553	0.9487	1.0114	0.9711	
double pulse	0.0044	1.4106	1.1124	1.0576	1.0157	
RFDA(Q=1)	0.0034	0.0927	0.5180	0.8262	1.0026	
LFDA(Q=3)	0.0027	0.0093	0.0081	0.6996	0.7783	
RFDA(Q=3)	0.0018	0.0049	0.0058	0.0113	0.4515	

Random diversity type and broad bandwidth benefit the observation completion.

Contact	nation
Unicol	

Email:	wangleixd@sina.com	(Lei Wang)	
	yiminliu@tsinghua.edu.cn	(Yimin Liu <u>)</u>	
Phone:	+86-13164238089		