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Chapter 1: Overview of Digital Signal Processing 
 

Chapter Intended Learning Outcomes: 
 
(i) Understand basic terminology in digital signal processing 
 
(ii) Differentiate digital signal processing and analog signal 
processing 
 
(iii) Describe basic digital signal processing application areas 
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Signal: 
 

 Anything that conveys information, e.g.,  
 

 Speech  
 

 Electrocardiogram (ECG) 
 

 Radar pulse 
 

 DNA sequence 
 

 Stock price 
 

 Code division multiple access (CDMA) signal 
 

 Image 
 

 Video 
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Fig.1.1: Speech 
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Fig.1.2: ECG 
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Fig.1.3: Transmitted & received radar waveforms 
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Radar transceiver sends a 1-D sinusoidal pulse at time 0 
 
It then receives echo reflected by an object at a range of  
 
Reflected signal is noisy and has a time delay of  which 
corresponds to round trip propagation time of radar pulse 
 
Given the signal propagation speed, denoted by ,  is 
simply related to  as: 
 
                                           (1.1) 

  
As a result, the radar pulse contains the object range 
information 
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 Can be a function of one, two or three independent 
variables, e.g., speech is 1-D signal, function of time; 
image is 2-D, function of space; wind is 3-D, function of 
latitude, longitude and elevation 

 
 3 types of signals that are functions of time: 
 

 Continuous-time (analog) : defined on a continuous 
range of time , amplitude can be any value 

 

 Discrete-time : defined only at discrete instants of 
time , amplitude can be any value 

 

 Digital (quantized) : both time and amplitude are 
discrete, i.e., it is defined only at  and 
amplitude is confined to a finite set of numbers 
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 Fig. 1.4: Relationships between ,  and  
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 at  is close to 2 and  
 

 at  and   
 
Using 4-bit representation,  and ,  and 
in general, the value of  is restricted to be an integer 
between  and  according to the two’s complement 
representation.  
 
In digital signal processing (DSP), we deal with  as it 
corresponds to computer-based processing. Throughout the 
course, it is assumed that discrete-time signal = digital 
signal, or the quantizer has infinite resolution  
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System: 
 

 Mathematical model or abstraction of a physical process 
that relates input to output, e.g.,  

 

 Grading system: inputs are coursework and examination 
marks, output is grade 

 

 Squaring system: input is 5, then the output is 25 
 

 Amplifier: input is )cos( tω , then output is )cos(10 tω  
 

 Communication system: input to mobile phone is voice, 
output from mobile phone is CDMA signal 

 

 Noise reduction system: input is a noisy speech, output 
is a noise-reduced speech 

 

 Feature extraction system: input is )cos( tω , output is ω 
 

 Any system that processes digital signals is called a digital 
system, digital filter or digital (signal) processor 
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Processing: 
 

 Perform a particular function by passing a signal through  
system 

analog signal 
processor

analog
input

analog
output

 
Fig.1.5: Analog processing of analog signal 
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 Fig.1.6: Digital processing of analog signal 
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Advantages of DSP over Analog Signal Processing 
 

 Allow development with the use of PC, e.g., MATLAB 
 

 Allow flexibility in reconfiguring the DSP operations simply 
by changing the program 

 

 Reliable: processing of 0 and 1 is almost immune to noise 
and data are easily stored without deterioration 

 

 Lower cost due to advancement of VLSI technology 
 

 Security can be introduced by encrypting/scrambling 
 

 Simple: additions and multiplications are main operations 
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DSP Application Areas 
 

 Speech 
 

 Compression (e.g., LPC is a coding standard for 
compression of speech data) 

 

 Synthesis (computer production of speech signals, e.g., 
text-to-speech engine by Microsoft) 

 

 Recognition (e.g., automatic telephone number enquiry 
system) 

 

 Enhancement (e.g., noise reduction for a noisy speech) 
 
 Audio 
 

 Compression (e.g., MP3 is a coding standard for 
compression of audio data) 
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 Generation of music by different musical instruments 
such as piano, cello, guitar and flute using computer 

 

 Song with low-cost electronic piano keyboard quality 
 

 Automatic music transcription (writing a piece of music 
down from a recording) 

 
 Image and Video 
 

 Compression (e.g., JPEG and MPEG is are coding 
standards for image and video compression, respectively) 

 

 Recognition such as face, palm and fingerprint 
 

 Enhancement 
 

 Construction of 3-D objects from 2-D images 
 

 Animation, e.g., “Avatar” 
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 Communications: encoding and decoding of digital 
communication signals 

 
 Astronomy: finding the periods of orbits 
 
 Biomedical Engineering: medical care and diagnosis, 

analysis of ECG, electroencephalogram (EEG), nuclear 
magnetic resonance (NMR) data 

 
 Bioinformatics: DNA sequence analysis, extracting, 

processing, and interpreting the information contained in 
genomic and proteomic data 

 
 Finance: market risk management, trading algorithm design, 

investment portfolio analysis 
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Chapter 2: Review of Analog Signal Analysis 
 

Chapter Intended Learning Outcomes: 
 
(i) Review of Fourier series which is used to analyze 
continuous-time periodic signals 
 
(ii) Review of Fourier transform which is used to analyze 
continuous-time aperiodic signals 
 
(iii) Review of analog linear time-invariant system 
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Fourier series and Fourier transform are the tools for 
analyzing analog signals. Basically, they are used for signal 
conversion between time and frequency domains: 
 

          (2.1) 
 
Fourier Series 
 

 For analysis of continuous-time periodic signals 
 

 Express periodic signals using harmonically related 
sinusoids with frequencies  where  is 
called the fundamental frequency 

 

 In the frequency domain,  only takes discrete values at 
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continuous and periodic discrete and aperiodic

time domain

... ... ... ...

frequency domain

 
Fig.2.1: Illustration of Fourier series 
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A continuous-time function  is said to be periodic if there 
exists  such that 
 
                       (2.2) 
 
The smallest  for which (2.2) holds is called the 
fundamental period 
 
The fundamental frequency is related to  as: 
 
                  (2.3) 

 
Every periodic function can be expanded into a Fourier 
series as 
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                               (2.4) 

where           

          ,        (2.5) 

 
are called Fourier series coefficients 
 

 is characterized by , the Fourier series coefficients 
in fact correspond to the frequency representation of . 
 
Generally,  is complex and we use magnitude and phase 
for its representation 
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                       (2.6) 
and 
                            (2.7) 

 
Example 2.1 
Find the Fourier series coefficients for 

. 
 

It is clear that the fundamental frequency of  is . 
According to (2.3), the fundamental period is thus equal to 

, which is validated as follows: 
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With the use of Euler formulas: 

 

and 

 

we can express  as: 
 

  
 
 

By inspection and using (2.4), we have 
 while all other Fourier series 

coefficients are equal to zero 
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Example 2.2 
Find the Fourier series coefficients for 

. 
 
Can we use (2.5)? Why? 
 
With the use of Euler formulas,  can be written as: 
 

 

 
 Using (2.4), we have: 
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To plot , we need to compute   and  for all , e.g., 

 

and 
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Example 2.3 
Find the Fourier series coefficients for , which is a 
periodic continuous-time signal of fundamental period  and 
is a pulse with a width of  in each period. Over the 
specific period from  to ,  is: 
 

 

 
with . According to (2.3), the fundamental frequency 
is . Using (2.5), we get: 
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For : 

 

For : 

 

 
The reason of separating the cases of  and  is to 
facilitate the computation of , whose value is not 
straightforwardly obtained from the general expression 
which involves “0/0”. Nevertheless, using ’s rule: 
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In summary, if a signal  is continuous in time and 
periodic, we can write: 
 

                               (2.4) 

 
The basic steps for finding the Fourier series coefficients are: 
 
1. Determine the fundamental period  and fundamental 

frequency  
 
2. For all , multiply  by , then integrate with 

respect to    for one period, finally divide the result by . 
Usually we separate the calculation into two cases:  
and  
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Fourier Transform 
 

 For analysis of continuous-time aperiodic signals 
 

 Defined on a continuous range of  
 

The Fourier transform of an aperiodic and continuous-time 
signal  is: 
 

                        (2.8) 

 

which is also called spectrum. The inverse transform is 
given by 
 

                        (2.9) 



H. C. So                                                                        Page 14                                     

continuous and aperiodic continuous and aperiodic

time domain frequency domain

 
Fig.2.2: Illustration of Fourier transform 
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The delta function  has the following characteristics: 
 

                      (2.10) 
 

                            (2.11) 

and 
                            (2.12) 

 
where  is a continuous-time signal.  
 
(2.10) and (2.11) indicate that  has a very large value or 
impulse at . That is,  is not well defined at  
 
(2.12) is known as the sifting property 
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Fig.2.3: Representation of  

 
The unit step function  has the form of: 
 

                    (2.13) 

 
As there is a sudden change from 0 to 1 at ,  is not 
well defined 
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Example 2.4 
Find the Fourier transform of  which is a rectangular 
pulse of the form: 
 

 

 
Note that the signal is of finite length and corresponds to 
one period of the periodic function in Example 2.3. Applying 
(2.8) on  yields: 
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Define the sinc function as: 
 

 

 
It is seen that  is a scaled sinc function because 
 

 

Fig.2.4: Fourier transform pair for rectangular pulse of  
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Example 2.5 
Find the inverse Fourier transform of  which is a 
rectangular pulse of the form: 
 

 

 
Using (2.9), we get: 
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Fig.2.5: Fourier transform pair for rectangular pulse of  
 

From Examples 2.4 and 2.5, we observe the duality 
property of Fourier transform 

 

Can you guess why we have the duality property? 
 
Example 2.6 
Find the Fourier transform of   with .  
 
Employing the property of  in (2.13) and (2.8), we get: 



H. C. So                                                                        Page 21                                     

 

 

Note that when ,  
 

 

and 
 

 
Fig.2.6: Magnitude and phase plots for  
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Example 2.7 
Find the Fourier transform of the delta function  .  
 
Using (2.11) and (2.12) with  and , we get: 
 

 

 
Spectrum of  has unit amplitude at all frequencies 
 
Based on , Fourier transform can be used to represent 
continuous-time periodic signals. Consider  
 

         (2.14) 
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Taking the inverse Fourier transform of  and employing 
Example 2.7,   is computed as: 
 

                   (2.15) 

 
As a result, the Fourier transform pair is: 
 

           (2.16) 
 
From (2.4) and (2.16), the Fourier transform pair for a 
continuous-time periodic signal is: 
 

   (2.17) 
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Example 2.8 
Find the Fourier transform of  which is 
called an impulse train. 
 
Clearly,  is a periodic signal with a period of . Using 
(2.5) and Example 2.7, the Fourier series coefficients are:  
 

 

     
with . According to (2.17), the Fourier transform is: 
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...... ......

Fig.2.7: Fourier transform pair for impulse train 
 
Fourier transform can be derived from Fourier series: 
 

Consider  and : 

... ...

Fig.2.8: Constructing  from  
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 is constructed as a periodic version of , with period  

 
According to (2.5), the Fourier series coefficients of  are: 
 

                              (2.18) 

 
where . Noting that  for  and 

 for , (2.18) can be expressed as: 
 

        (2.19) 
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According to (2.8), we can express  as: 
 

                              (2.20) 

 
The Fourier series expansion for  is thus: 
 

       (2.21) 

 
Considering  as  or  and  
as the area of a rectangle whose height is  and 
width corresponds to the interval of , we obtain 
 

(2.22) 
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Linear Time-Invariant (LTI) System 
 

 Linearity: if  and  are two input-output 
pairs, then  

 

 Time-Invariance: if , then  
 

 The input-output relationship for a LTI system is 
characterized by convolution: 

 

                          (2.23) 

where ,  and  are input, output and impulse 
response, respectively 

 

 Convolution in time domain corresponds to multiplication 
in Fourier transform domain, i.e.,  

 

                                                            (2.24) 
 



H. C. So                                                                        Page 29                                     

Proof:  
 

The Fourier transform of  is 

 (2.25) 
 

This suggests that  can be computed from inverse 
Fourier transform of . 
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Chapter 3: Discrete-Time Signals and Systems 
 

Chapter Intended Learning Outcomes: 
 
(i) Understanding deterministic and random discrete-time 
signals and ability to generate them 
 
(ii) Ability to recognize the discrete-time system properties, 
namely, memorylessness, stability, causality, linearity and 
time-invariance 
 
(iii) Understanding discrete-time convolution and ability to 
perform its computation 
 
(iv) Understanding the relationship between difference 
equations and discrete-time signals and systems 
 



H. C. So                                                                        Page 2                                          

Discrete-Time Signal 
  

 Discrete-time signal can be generated using a computing 
software such as MATLAB 
 It can also be obtained from sampling continuous-time 

signals in real world 

t

 

Fig.3.1:Discrete-time signal obtained from analog signal 
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 The discrete-time signal  is equal to  only at the 
sampling interval of ,  
 

      (3.1) 
   

where  is called the sampling period 
 

  is a sequence of numbers, , with 
 being the time index 

  
Basic Sequences 
 

 Unit Sample (or Impulse) 
 
                               (3.2) 
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It is similar to the continuous-time unit impulse  which is 
defined in (2.10)-(2.12) 
 

 is simpler than  because it is well defined for all  
while  is not defined at  
 

 Unit Step 
 
                                 (3.3) 
 

It is similar to to the continuous-time  of (2.13) 
 

 is well defined for all   but  is not defined . 
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 is an important function because it serves as the 
building block of any discrete-time signal : 
 

          (3.4) 

 
For example,  can be expressed in terms of  as: 
 

                               (3.5) 

 
Conversely, we can use  to represent : 
 
                             (3.6) 
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Introduction to MATLAB  
 

 MATLAB stands for ”Matrix Laboratory”  
 

 Interactive matrix-based software for numerical and 
symbolic computation in scientific and engineering 
applications 

 

 Its user interface is relatively simple to use, e.g.,  we can 
use the help command to understand the usage and 
syntax of each MATLAB function 

 

 Together with the availability of numerous toolboxes, 
there are many useful and powerful commands for various 
disciplines 

 

 MathWorks offers MATLAB to C conversion utility 
 

 Similar packages include Maple and Mathematica 
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Discrete-Time Signal Generation using MATLAB 
 

A deterministic discrete-time signal  satisfies a 
generating model with known functional form: 
 

                                   (3.7) 
 

where  is a function of parameter vector  and time 
index . That is, given  and ,  can be produced 
 

e.g., the time-shifted unit sample  and unit step 
function , where the parameter is  
 

e.g., for an exponential function , we have  
where  is the decay factor and  is the time shift 
 

e.g., for a sinusoid  , we have   
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Example 3.1 
Use MATLAB to generate a discrete-time sinusoid of the 
form: 
 

 
 

with , ,  and , which has a duration of 
21 samples 
 

We can generate  by using the following MATLAB code: 
 

N=21;                  %number of samples is 21 
A=1;                   %tone amplitude is 1 
w=0.3;                 %frequency is 0.3 
p=1;                   %phase is 1 
for n=1:N 
x(n)=A*cos(w*(n-1)+p); %time index should be >0 
end 
Note that x is a vector and its index should be at least 1. 
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Alternatively, we can also use: 
 

N=21;                  %number of samples is 21 
A=1;                   %tone amplitude is 1 
w=0.3;                 %frequency is 0.3 
p=1;                   %phase is 1 
n=0:N-1;               %define time index vector 
x=A.*cos(w.*n+p);      %first time index is also 1 
 

Both give 
x = 
 

Columns 1 through 7  
 

0.5403 0.2675 -0.0292 -0.3233 -0.5885 -0.8011 -0.9422 
 

Columns 8 through 14  
 

-0.9991 -0.9668 -0.8481 -0.6536 -0.4008 -0.1122 0.1865 
 

Columns 15 through 21  
 

0.4685 0.7087 0.8855 0.9833 0.9932 0.9144 0.7539 
 

Which approach is better? Why? 
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To plot , we can either use the commands stem(x) and 
plot(x) 
 

If the time index is not specified, the default start time is 
 

 

Nevertheless, it is easy to include the time index vector in 
the plotting command 
 

e.g., Using stem to plot  with the correct time index: 
 

n=0:N-1;      %n is vector of time index 
stem(n,x)      %plot x versus n 
 

Similarly, plot(n,x) can be employed to show  
 
The MATLAB programs for this example are provided as 
ex3_1.m and ex3_1_2.m 
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Fig.3.2: Plot of discrete-time sinusoid using stem 
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Fig.3.3: Plot of discrete-time sinusoid using plot 
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Apart from deterministic signal, random signal is another 
importance signal class. It cannot be described by 
mathematical expressions like deterministic signals but is 
characterized by its probability density function (PDF). 
MATLAB has commands to produce two common random 
signals, namely, uniform and Gaussian (normal) variables. 

 

A uniform integer sequence  whose values are uniformly 
distributed between 0 and  ,  can be generated using: 
 

                        (3.8) 
 

where  and  are very large positive integers,  is the 
reminder of dividing  by  
 

Each admissible value of  has the same 
probability of occurrence of approximately  
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We also need an initial integer or seed, say, , 
for starting the generation of  
 

(3.8) can be easily modified by properly scaling and shifting  
 

e.g., a random number which is uniformly between –0.5 
and 0.5, denoted by , is obtained from : 
 

                                (3.9) 

 
The MATLAB command rand is used to generate random 
numbers which are uniformly between 0 and 1 
 

e.g., each realization of stem(0:20,rand(1,21)) gives a 
distinct and random sequence, with values are bounded 
between 0 and 1 
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Fig.3.4: Uniform number realizations using rand 
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Example 3.2 
Use MATLAB to generate a sequence of 10000 random 
numbers uniformly distributed between –0.5 and 0.5 based 
on the command rand. Verify its characteristics. 
 
According to (3.9), we use u=rand(1,10000)-0.5 to 
generate the sequence 
 
To verify the uniform distribution, we use hist(u,10), 
which bins the elements of u into 10 equally-spaced 
containers 
 
We see all numbers are bounded between –0.5 and 0.5, and 
each bar which corresponds to a range of 0.1, contains 
approximately 1000 elements.  
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Fig.3.5: Histogram for uniform sequence 
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On the other hand, the PDF of u, denoted by , is 
 

 
 

such that . The theoretical mean and power of 
u, are computed as 
 

 

and 

 

 
Average value and power of u in this realization are 
computed using mean(u) and mean(u.*u), which give 0.002 
and 0.0837, and they align with theoretical calculations 
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Gaussian numbers can be generated from the uniform 
variables 
 

Given a pair of independent random numbers uniformly 
distributed between 0 and 1,  , a pair of independent 
Gaussian numbers , which have zero mean and unity 
power (or variance), can be generated from: 
 

                         (3.10) 
and 

                              (3.11) 
 

The MATLAB command is randn. Equations (3.10) and 
(3.11) are known as the Box-Mueller transformation  
 

e.g., each realization of stem(0:20,randn(1,21)) gives a 
distinct and random sequence, whose values are fluctuating 
around zero 
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Fig.3.6: Gaussian number realizations using randn 
 



H. C. So                                                                        Page 21                                          

Example 3.3 
Use the MATLAB command randn to generate a zero-mean 
Gaussian sequence of length 10000 and unity power. Verify 
its characteristics. 
 
We use w=randn(1,10000) to generate the sequence and 
hist(w,50) to show its distribution 
 
The distribution aligns with Gaussian variables which is 
indicated by the bell shape 
 
The empirical mean and power of w computed using 
mean(w) and mean(w.*w) are  and 1.0028 
 
The theoretical standard deviation is 1 and we see that 
most of the values are within –3 and 3 
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Fig.3.7: Histogram for Gaussian sequence 
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Discrete-Time Systems 
 

A discrete-time system is an operator which maps an 
input sequence  into an output sequence : 
 

                                 (3.12) 
 
 
 

 Memoryless:  at time  depends only on  at time  
 

Are they memoryless systems? 
 

y[n]=(x[n])2 
 

y[n]=x[n]+ x[n-2] 
 

 Linear: obey principle of superposition, i.e., if 
 

   and   
then 
 

     (3.13) 
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Example 3.4 
Determine whether the following system with input  and 
output , is linear or not: 
 

 

  
A standard approach to determine the linearity of a system 
is given as follows. Let 
 

 
with 

 
 
If , then the system is linear. Otherwise, 
the system is nonlinear. 
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Assigning , we have: 
 

 
 
Note that the outputs for  and  are  
and  
 
As a result, the system is linear 
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Example 3.5 
Determine whether the following system with input  and 
output , is linear or not: 
 

 
 

The system outputs for  and  are 
 and . Assigning 

, its system output is then: 
 

 
 
As a result, the system is nonlinear 
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 Time-Invariant: a time-shift of input causes a 
corresponding shift in output, i.e., if 

 

 

 
  then 

                          (3.14) 
 
Example 3.6 
Determine whether the following system with input  and 
output , is time-invariant or not: 
 

 

  
A standard approach to determine the time-invariance of a 
system is given as follows.  
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Let 
 

with  
 

If , then the system is time-invariant. 
Otherwise, the system is time-variant. 
 

From the given input-output relationship,  is: 
 

 

 

Let , its system output is: 
 

 
 

As a result, the system is time-invariant. 
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Example 3.7 
Determine whether the following system with input  and 
output , is time-invariant or not: 
 

 
 
From the given input-output relationship,  is of the 
form: 

 
 
Let , its system output is: 
 

 
 
As a result, the system is time-variant. 
 



H. C. So                                                                        Page 30                                          

 Causal: output  at time  depends on input  up to 
time  

 

For linear time-invariant (LTI) systems, there is an 
alternative definition. A LTI system is causal if its impulse 
response  satisfies: 

 

                               (3.15) 
 

Are they causal systems? 
 

y[n]=x[n]+x[n+1] 

 

y[n]=x[n]+x[n-2] 
 

 Stable: a bounded input  ( ) produces a 
bounded output  ( ) 
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For LTI system, stability also corresponds to 
 

                                (3.16) 

 

Are they stable systems? 
 

y[n]=x[n]+x[n+1] 

 

y[n]=1/x[n] 
 

Convolution 
 

The input-output relationship for a LTI system is 
characterized by convolution: 
 

                        (3.17) 

which is similar to (2.23) 
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(3.17) is simpler as it only needs additions and 
multiplications 
 

 specifies the functionality of the system 
 

 Commutative 
 

   (3.18) 

and 

                                    (3.19) 
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Fig.3.8: Commutative property of convolution 
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 Linearity 
 

   (3.20) 
 

 
 

Fig.3.9: Linear property of convolution 
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Example 3.8 
Compute the output   if the input is   and the 
LTI system impulse response is  . 
Determine the stability and causality of system. 
 
Using (3.17), we have: 
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Alternatively, we can first establish the general relationship 
between  and  with the specific  and (3.4): 
 

 
 

Substituting  yields the same . 
 
Since   and  for  
the system is stable and causal 
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Example 3.9 
Compute the output   if the input is   and the 
LTI system impulse response is  . 
Determine the stability and causality of system. 
 

Using (3.17), we have: 
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Let   and   
such that . By employing a change of 
variable,   is expressed as 
  

 

 

Since  for ,    for . For  ,  is: 
 

 

 

That is, 
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Similarly,  is: 
 

 

  
Since  for ,    for . For  ,  is: 
 

 

    
That is, 
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Combining the results, we have: 
 

 

or 

 

 
Since  , the system is stable. 
Moreover, the system is causal because  for . 
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Example 3.10 
Determine  where  and  are 
 

 

and 
 

 
Here, the lengths of both  and  are finite. More 
precisely, , , , ,  , , 

 and  while all other  and  have zero 
values. 
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We still use (3.17) but now it reduces to a finite summation: 

 

By considering the non-zero values of , we obtain: 
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Alternatively, for finite-length discrete-time signals, we can 
use the MATLAB command conv to compute the convolution 
of finite-length sequences: 
 
n=0:3; 
x=n.^2+1; 
h=n+1; 
y=conv(x,h) 
 
The results are 
 
y = 1    4    12    30    43    50    40 
 
As the default starting time indices in both h and x are 1, 
we need to determine the appropriate time index for y 
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The correct index can be obtained by computing one value 
of  using (3.17). For simplicity, we may compute : 
 

 
 
In general, if the lengths of  and  are  and , 
respectively, the length of  is . 
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Linear Constant Coefficient Difference Equations 
 

For a LTI system, its input  and output  are related via 
a th-order linear constant coefficient difference equation:  
 

                      (3.21) 

 

which is useful to check whether a system is both linear and 
time-invariant or not 
 
Example 3.11 
Determine if the following input-output relationships 
correspond to LTI systems: 
(a)  
(b)  
(c)   
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We see that (a) corresponds to a LTI system with , 
,  and  

 
For (b), we reorganize the equation as: 
 

 
 
which agrees with (3.21) when ,  and 

. Hence (b) also corresponds to a LTI system 
 
For (c), it does not correspond to a LTI system because  
and  are not linear in the equation 
 
Note that if a system cannot be fitted into (3.21), there are 
three possibilities: linear and time-variant; nonlinear and 
time-invariant; or nonlinear and time-variant 



H. C. So                                                                        Page 47                                          

Example 3.12 
Compute the impulse response  for a LTI system which is 
characterized by the following difference equation: 
 

 
 
Expanding (3.17) as 
 

 
 
we can easily deduce that only  and  are nonzero. That 
is, the impulse response is: 
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The difference equation is also useful to generate the 
system output and input. 
 
Assuming that ,  is computed as: 
 

          (3.22) 

 
Assuming that ,  can be obtained from: 
 

             (3.23) 

 
 
 



H. C. So                                                                        Page 49                                          

Example 3.13 
Given a LTI system with difference equation of 

, compute the system output 
 for  with an input of . It is assumed 

that . 
 
The MATLAB code is: 
 
N=50;     %data length is N+1 
y(1)=1;     %compute y[0], only x[n] is nonzero 
for n=2:N+1 
y(n)=0.5*y(n-1)+2; %compute y[1],y[2],…,y[50]  

         %x[n]=x[n-1]=1 for n>=1 
end 
n=[0:N];       %set time axis 
stem(n,y); 
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Fig.3.10: Output generation with difference equation 
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Alternatively, we can use the MATLAB command filter by 
rewriting the equation as: 
 

 
 

The corresponding MATLAB code is: 
 

x=ones(1,51);      %define input 
a=[1,-0.5];       %define vector of a_k 
b=[1,1];         %define vector of b_k 
y=filter(b,a,x);     %produce output 
stem(0:length(y)-1,y) 
 

The x is the input which has a value of 1 for , while 
a and b are vectors which contain  and , respectively. 
 

The MATLAB programs for this example are provided as 
ex3_13.m and ex3_13_2.m. 
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Chapter 4: Sampling and Reconstruction of 
Analog Signals 
 
 

Chapter Intended Learning Outcomes: 
 

(i) Ability to convert an analog signal to a discrete-time 
sequence via sampling 
 
(ii) Ability to construct an analog signal from a discrete-time 
sequence 
 
(iii) Understanding the conditions when a sampled signal 
can uniquely represent its analog counterpart 
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Sampling 
 

 Process of converting a continuous-time signal  into a 
discrete-time sequence  
 

  is obtained by extracting  every  s where  is 
known as the sampling period or interval 
 

sample at

analog
signal 

discrete-time
signal  

Fig.4.1: Conversion of analog signal to discrete-time sequence 
 

 Relationship between  and  is: 
 

        (4.1) 
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 Conceptually, conversion of  to  is achieved by a 
continuous-time to discrete-time (CD) converter: 

t n

impulse train 
to sequence 
conversion

CD converter

 
Fig.4.2: Block diagram of CD converter 
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 A fundamental question is whether  can uniquely 
represent  or if we can use  to reconstruct  

t

 
Fig.4.3: Different analog signals map to same sequence 
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But, the answer is yes when: 
 

(1)  is bandlimited such that its Fourier transform 
 for  where  is called the bandwidth 

 

(2) Sampling period  is sufficiently small 
 
Example 4.1 
The continuous-time signal   is used as the 
input for a CD converter with the sampling period  s. 
Determine the resultant discrete-time signal  . 
 
According to (4.1),  is 
 

 
 

The frequency in  is   while that of  is  
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Frequency Domain Representation of Sampled Signal 
 

In the time domain,  is obtained by multiplying  by 
the impulse train :  
 

          (4.2) 

 

with the use of the sifting property of (2.12) 
 
Let the sampling frequency in radian be  (or 

 in Hz). From Example 2.8: 
 

                            (4.3) 
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Using multiplication property of Fourier transform: 
       

(4.4) 

 
where the convolution operation corresponds to continuous-
time signals 
 
Using (4.2)-(4.4) and properties of ,  is:  
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   (4.5) 
 

which  is the sum of infinite copies of  scaled by  
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When  is chosen sufficiently large such that all copies of 
 do not overlap, that is,  or , we 

can get  from  
 

......

......

 
Fig.4.4:  for sufficiently large  
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When  is not chosen sufficiently large such that , 
copies of  overlap, we cannot get  from , 
which is referred to  aliasing 
 

......

......

 
Fig.4.5:  when  is not large enough 
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Nyquist Sampling Theorem (1928) 
 
Let  be a bandlimited continuous-time signal with  
 

                          (4.6) 
 
Then  is uniquely determined by its samples , 

, if 
 

                                  (4.7) 

 
The bandwidth  is also known as the Nyquist frequency 
while  is called the Nyquist rate and  must exceed it in 
order to avoid aliasing 
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Application    
Biomedical  Hz 1 kHz 
Telephone speech  kHz 8 kHz 
Music  kHz 44.1 kHz 
Ultrasonic  kHz 250 kHz 
Radar  MHz 200 MHz 

Table 4.1: Typical bandwidths and sampling frequencies in 
signal processing applications 
 
Example 4.2 
Determine the Nyquist frequency and Nyquist rate for the 
continuous-time signal  which has the form of: 
 

 
 

The frequencies are 0,  and . The Nyquist 
frequency is    and the Nyquist rate is   
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......

Fig.4.6: Multiplying  and  to recover  
 
In frequency domain, we multiply  by  with 
amplitude  and bandwidth  with , to 
obtain , and it corresponds to  
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Reconstruction 
 

 Process of transforming  back to   

sequence to
impulse train 
conversion

DC converter

 
Fig.4.7: Block diagram of DC converter 

 

From Fig.4.6,  is 
 

                        (4.8) 

 where  
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For simplicity, we set  as the average of  and : 
 

                                   (4.9) 

 
To get , we take inverse Fourier transform of  and 
use Example 2.5: 
 

    (4.10) 

 
where  
 



H. C. So                                                                        Page 16                                        

Using (2.23)-(2.24), (4.2) and (2.11)-(2.12),  is: 
 

               (4.11) 

 
which holds for all real values of  
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The interpolation formula can be verified at : 
 

                       (4.12) 

It is easy to see that  
                (4.13) 

 

For , we use ’s rule to obtain: 
 

      (4.14) 

 

Substituting (4.13)-(4.14) into (4.12) yields: 
 

                       (4.15) 
 

which aligns with  
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Example 4.3 
Given a discrete-time sequence . Generate its 
time-delayed version  which has the form of 
 

 
 

where  and  is a positive integer. Applying 
(4.11) with : 
 

 

 

By employing a change of variable of : 
 
 

 

 

Is it practical to get y[n]? 
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Note that when , the time-shifted signal is simply 
obtained by shifting the sequence  by  samples: 
 

 
 

Sampling and Reconstruction in Digital Signal Processing 
 

CD converter digital signal 
processor DC converter

 
Fig.4.8: Ideal digital processing of analog signal 

 

 CD converter produces a sequence  from  
  is processed in discrete-time domain to give  
 DC converter creates  from  according to (4.11): 
 

                    (4.16) 
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anti-aliasing 
filter

digital signal 
processor

digital-to-analog 
converter

analog-to-digital 
converter

Fig.4.9: Practical digital processing of analog signal 
 

  may not be precisely bandlimited ⇒ a lowpass filter or 
anti-aliasing filter is needed to process  
 Ideal CD converter is approximated by AD converter 

 Not practical to generate  
 AD converter introduces quantization error 

 Ideal DC converter is approximated by DA converter 
because ideal reconstruction of (4.16) is impossible 
 Not practical to perform infinite summation 
 Not practical to have future data 

  and  are quantized signals 
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Example 4.4 
Suppose a continuous-time signal  is sampled at 
a sampling frequency of 1000Hz to produce : 
  

 
 

Determine 2 possible positive values of  , say,  and . 
Discuss if  or  will be obtained when passing 

 through the DC converter. 
 

According to (4.1) with  s: 
 

 
 

 is easily computed as: 
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 can be obtained by noting the periodicity of a sinusoid: 
 

 
 

As a result, we have: 
 

 
 

This is illustrated using the MATLAB code: 
 

O1=250*pi;       %first frequency  
O2=2250*pi;       %second frequency 
Ts=1/100000;%successive sample separation is 0.01T 
t=0:Ts:0.02;%observation interval 
x1=cos(O1.*t);       %tone from first frequency 
x2=cos(O2.*t);        %tone from second frequency 
 

There are 2001 samples in 0.02s and interpolating the 
successive points based on plot yields good approximations  
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Fig.4.10: Discrete-time sinusoid 
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Fig.4.11: Continuous-time sinusoids 
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Passing  through the DC converter only produces  
but not  
 

The Nyquist frequency of  is   and hence the 
sampling frequency without aliasing is  
 

Given  Hz or  ,  does not 
correspond to  
 

We can recover  because the Nyquist frequency 
and Nyquist rate for  are   and   
 

Based on (4.11),  is:  
 

 

 

with  s 
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The MATLAB code for reconstructing  is: 
 

n=-10:30;          %add 20 past and future samples 
x=cos(pi.*n./4); 
T=1/1000;          %sampling interval is 1/1000 
for l=1:2000       %observed interval is [0,0.02] 
t=(l-1)*T/100;%successive sample separation is 0.01T 
h=sinc((t-n.*T)./T); 
xr(l)=x*h.'; %approximate interpolation of (4.11) 
end 
 

We compute 2000 samples of  in s 
 

The value of each  at time t is approximated as x*h.' 
where the sinc vector is updated for each computation 
 

The MATLAB program is provided as ex4_4.m 
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Fig.4.12: Reconstructed continuous-time sinusoid 
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Example 4.5 
Play the sound for a discrete-time tone using MATLAB. The 
frequency of the corresponding analog signal is 440 Hz 
which corresponds to the A note in the American Standard 
pitch. The sampling frequency is 8000 Hz and the signal has 
a duration of 0.5 s. 
 
The MATLAB code is 
 
A=sin(2*pi*440*(0:1/8000:0.5));%discrete-time A 
sound(A,8000);         %DA conversion and play 

 
Note that sampling frequency in Hz is assumed for sound. 
The frequencies of notes B, C#, D, E and F# are 493.88 Hz, 
554.37 Hz, 587.33 Hz, 659.26 Hz and 739.99 Hz, 
respectively. You can easily produce a piece of music with 
notes: A, A, E, E, F#, F#, E, E, D, D, C#, C#, B, B, A, A.  
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Chapter 5: z Transform 
 
 

Chapter Intended Learning Outcomes: 
 

(i) Understanding the relationship between  transform and 
the Fourier transform for discrete-time signals 
 
(ii) Understanding the characteristics and properties of  
transform 
 
(iii) Ability to compute  transform and inverse  transform 
 
(iv) Ability to apply  transform for analyzing linear time-
invariant (LTI) systems 
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Definition 
  

The  transform of , denoted by , is defined as: 
 

                            (5.1) 
 

where  is a continuous complex variable. 
 

Is X(z) real-valued or complex-valued? 
 
Relationship with Fourier Transform 
 

Employing (4.2), we construct the continuous-time sampled 
signal  with a sampling interval of  from : 
 
                            (5.2) 
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Taking Fourier transform of  with using properties of : 
 

          (5.3) 

 

Defining  as the discrete-time frequency parameter 
and writing  as , (5.3) becomes 
 

                            (5.4) 

 

which is known as discrete-time Fourier transform (DTFT) or 
Fourier transform of discrete-time signals 
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 is periodic with period : 
 

     (5.5) 

 

where  is any integer. Since  is a continuous complex 
variable, we can write 
 

                                        (5.6) 
 

where   is magnitude and   is angle of . 
Employing (5.6), the  transform is: 
 

               (5.7) 

 

which is equal to the DTFT of  . When  or  , 
(5.7) and (5.4) are identical: 
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                   (5.8) 

unit circle

-plane

 
Fig.5.1: Relationship between  and  on the -plane 
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Region of Convergence (ROC) 
 

ROC indicates when  transform of a sequence converges 
 

Generally there exists some  such that 
 

                      (5.9) 

 

where the  transform does not converge 
 

The set of values of  for which  converges or  
 

           (5.10) 

 

is called the ROC, which must be specified along with  in 
order for the  transform to be complete 
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Assuming that  is of infinite length, we decompose : 
 
                         (5.11) 
where 

                  (5.12) 

and 

                           (5.13) 

 

Let ,  is expanded as: 
 

               (5.14) 
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According to the ratio test, convergence of   requires 
 

                              (5.15) 

 
Let .  converges if 

 

          (5.16) 

 
That is, the ROC for  is . 
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Let .   converges if 
 

          (5.17) 

 
As a result, the ROC for  is  
 

Combining the results, the ROC for  is : 
 

 ROC is a ring when  
 

 No ROC if  and  does not exist 
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-plane-plane-plane-plane

Fig.5.2: ROCs for ,  and  
 

Poles and Zeros 
 

Values of  for which  are the zeros of  
 

Values of  for which  are the poles of  
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In many real-world applications,  is represented as a 
rational function: 

                        (5.18) 

 

Factorizing  and , (5.18) can be written as 
 
              (5.19) 

 
How many poles and zeros in (5.18)? What are they? 
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Example 5.1 
Determine the  transform of  where  is the 
unit step function. Then determine the condition when the 
DTFT of  exists. 
 

Using (5.1) and (3.3), we have 
 

 

  

According to (5.10),  converges if  
  

 

 

Applying the ratio test, the convergence condition is 
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Note that we cannot write  because  may be complex  
 

For ,  is computed as 
 

 

 

Together with the ROC, the  transform of  is: 
  

 
 

It is clear that  has a zero at  and a pole at . 
Using (5.8), we substitute  to obtain 
 

 
 

As a result, the existence condition for DTFT of  is . 
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Otherwise, its DTFT does not exist. In general, the DTFT 
 exists if its ROC includes the unit circle. If  

includes ,  is required.  

-plane -plane-plane-plane-plane-plane

 
Fig.5.3: ROCs for  and  when  
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Example 5.2 
Determine the  transform of . Then 
determine the condition when the DTFT of  exists. 
 

Using (5.1) and (3.3), we have 
 

 

 

Similar to Example 5.1,  converges if  or , 
which aligns with the ROC for  in (5.17). This gives 
  

 

  

Together with ROC, the  transform of  is: 
 

 



H. C. So                                                                        Page 16                                    

Using (5.8), we substitute  to obtain 
 

 
 

As a result, the existence condition for DTFT of  is .  

-plane -plane-plane-plane-plane-plane

 
Fig.5.4: ROCs for  and  when  
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Example 5.3 
Determine the  transform of  where 

. 
 
Employing the results in Examples 5.1 and 5.2, we have 
 

 

  
Note that its ROC agrees with Fig.5.2.  
 
What are the pole(s) and zero(s) of X(z)? 
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Example 5.4 
Determine the  transform of . 
 

Using (5.1) and (3.2), we have 
 

 

Example 5.5 
Determine the  transform of  which has the form of: 
 

 

Using (5.1), we have 
 

 
 

What are the ROCs in Examples 5.4 and 5.5? 
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Finite-Duration and Infinite-Duration Sequences 
 

Finite-duration sequence: values of  are nonzero only for 
a finite time interval 
 

Otherwise,  is called an infinite-duration sequence: 
 

 Right-sided: if  for   where  is an 
integer (e.g.,  with ;  with 

;  with ) 
 

 Left-sided: if  for   where  is an 
integer (e.g.,  with ) 

 

 Two-sided: neither right-sided nor left-sided (e.g., 
Example 5.3) 
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n

 
Fig.5.5: Finite-duration sequences 
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n

 
Figure 5.6: Infinite-duration sequences 
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Sequence Transform ROC 
 1 All  

  , ; ,  
 

 
  

 
 

  
 

 
   

 
 

   
 

 
    

 
    

Table 5.1:  transforms for common sequences 
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Eight ROC properties are: 
 

P1. There are four possible shapes for ROC, namely, the 
entire region except possibly  and/or , a ring, or 
inside or outside a circle in the -plane centered at the 
origin (e.g., Figures 5.5 and 5.6) 
 

P2. The DTFT of a sequence  exists if and only if the ROC 
of the  transform of  includes the unit circle (e.g., 
Examples 5.1 and 5.2) 
 

P3: The ROC cannot contain any poles (e.g., Examples 5.1 
to 5.5) 
 

P4: When  is a finite-duration sequence, the ROC is the 
entire -plane except possibly  and/or  (e.g., 
Examples 5.4 and 5.5) 
 



H. C. So                                                                        Page 24                                    

P5: When  is a right-sided sequence, the ROC is of the 
form  where  is the pole with the largest 
magnitude in  (e.g., Example 5.1) 
 

P6: When  is a left-sided sequence, the ROC is of the 
form  where  is the pole with the smallest 
magnitude in  (e.g., Example 5.2) 
 

P7: When  is a two-sided sequence, the ROC is of the 
form  where  and  are two poles with the 
successive magnitudes in  such that  (e.g., 
Example 5.3)  
 

P8: The ROC must be a connected region  
 

Example 5.6 
A  transform  contains three poles, namely, ,  and  
with . Determine all possible ROCs. 
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Fig.5.7: ROC possibilities for three poles 
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What are other possible ROCs? 
 

Inverse z Transform 
 

Inverse  transform corresponds to finding  given  
and its ROC 
 

The  transform and inverse  transform are one-to-one 
mapping provided that the ROC is given: 
 

                                     (5.20) 
 

There are 4 commonly used techniques to evaluate the 
inverse  transform. They are 
 

1. Inspection 
 

2. Partial Fraction Expansion 
 

3. Power Series Expansion 
 

4. Cauchy Integral Theorem 
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Inspection 
 
When we are familiar with certain transform pairs, we can 
do the inverse  transform by inspection 
 
Example 5.7 
Determine the inverse  transform of  which is 
expressed as: 
 

 

 
We first rewrite  as: 
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Making use of the following transform pair in Table 5.1: 
 

 

 
and putting , we have: 
 

 

 
By inspection, the inverse  transform is: 
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Partial Fraction Expansion 
 

It is useful when  is a rational function in : 
 

                                     (5.21) 

 

For pole and zero determination, it is advantageous to 
multiply  to both numerator and denominator: 
 

                   (5.22) 
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 When , there are  pole(s) at  
 

 When , there are  zero(s) at  
 

To obtain the partial fraction expansion from (5.21), the 
first step is to determine the  nonzero poles,  
 

There are 4 cases to be considered: 
 

Case 1:   and all poles are of first order 
 

For first-order poles, all  are distinct.  is: 
 

                            (5.23) 

 

For each first-order term of , its inverse  
transform can be easily obtained by inspection 
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Multiplying both sides by   and evaluating for   
 

                                 (5.24) 
 

An illustration for computing  with  is: 
  

                (5.25) 
 

Substituting , we get  
 

In summary, three steps are: 
 

 Find poles 
 

 Find  
 

 Perform inverse  transform for the fractions by inspection 
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Example 5.8 
Find the pole and zero locations of : 
 

 
 

Then determine the inverse  transform of . 
 

We first multiply  to both numerator and denominator 
polynomials to obtain: 
 

 

 
Apparently, there are two zeros at  and . On the 
other hand, by solving the quadratic equation at the 
denominator polynomial, the poles are determined as  
and .  
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According to (5.23), we have: 
 

 
 

Employing (5.24),  is calculated as: 
 

 
 

Similarly,  is found to be . As a result, the partial 
fraction expansion for  is 
 

 
 

As the ROC is not specified, we investigate all possible 
scenarios, namely, , , and . 
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For , we notice that  
 

 

 and 
 

 

where both ROCs agree with . Combining the 
results, the inverse  transform  is: 
 

 
  
which is a right-sided sequence and aligns with P5. 
 

For , we make use of 
 

 

and 
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where both ROCs agree with . This implies: 
 

 
 

which is a two-sided sequence and aligns with P7. 
 

Finally, for : 
 

and 
 

 

where both ROCs agree with . As a result, we have: 
 

 
 

which is a left-sided sequence and aligns with P6. 
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Suppose  is the impulse response of a discrete-time LTI 
system. Recall (3.15) and (3.16): 
 

 
and 

 

 

The three possible impulse responses: 
 

  is the impulse response of a 
causal but unstable system 
 

  corresponds to a noncausal 
but stable system 

 

  is noncausal and unstable 
 

Which of the h[n] has/have DTFT? 
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Case 2:   and all poles are of first order 
 

In this case,  can be expressed as: 
 

               (5.26) 

 

   are obtained by long division of the numerator by the 
denominator, with the division process terminating when 
the remainder is of lower degree than the denominator 
 

  can be obtained using (5.24). 
 

Example 5.9 
Determine  which has  transform of the form: 
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The poles are easily determined as  and  
 

According to (5.26) with : 
 

 
 

The value of  is found by dividing the numerator 
polynomial by the denominator polynomial as follows: 
 

           

 
 

That is, . Thus  is expressed as 
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According to (5.24),  and  are calculated as 
 

 

and 

 

With : 
 

 

 

and 
 

 

the inverse  transform  is: 
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Case 3:   with multiple-order pole(s) 
   

If  has a -order pole at  with , this means that 
there are  repeated poles with the same value of .  is: 
 

            (5.27) 

 

 When there are two or more multiple-order poles, we 
include a component like the second term for each 
corresponding pole 
 

  can be computed according to (5.24) 
 

  can be calculated from: 
 

         (5.28) 
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Example 5.10 
Determine the partial fraction expansion for : 
 

 

 
It is clear that  corresponds to Case 3 with  
and one second-order pole at . Hence  is: 
 

 

 

 Employing (5.24),  is: 
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Applying (5.28),  is: 
 

  
and 
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Therefore, the partial fraction expansion for  is 
 

 

 

Case 4:   with multiple-order pole(s) 
 

This is the most general case and the partial fraction 
expansion of  is 
 

      (5.29) 

 

assuming that there is only one multiple-order pole of order 
 at . It is easily extended to the scenarios when 

there are two or more multiple-order poles as in Case 3. 
The  ,  and  can be calculated as in Cases 1, 2 and 3  
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Power Series Expansion 
 

When  is expanded as power series according to (5.1): 
 

 (5.30) 
 

any particular value of  can be determined by finding the 
coefficient of the appropriate power of  
 

Example 5.11 
Determine  which has  transform of the form: 
 

 
  

Expanding  yields 
 

 
 

From (5.30),  is deduced as: 
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Example 5.12 
Determine  whose  transform is given as: 
 

 
 

With the use of the power series expansion for : 
 

 

 

 with  can be expressed as     
 

 

 

From (5.30),  is deduced as: 
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Example 5.13 
Determine  whose  transform has the form of: 
 

 
 

With the use of 
 

 
 

Carrying out long division in  with : 
 

 
 

From (5.30),  is deduced as: 
 

 
 

which agrees with Example 5.1 and Table 5.1 
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Example 5.14 
Determine  whose  transform has the form of: 
 

 
 

We first express  as: 
 

 
 

Carrying out long division in  with : 
 

 
 

From (5.30),  is deduced as: 
 

 
 

which agrees with Example 5.2 and Table 5.1 
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Properties of z Transform 
 

1. Linearity 
 

 

Let  and  be two  transform pairs with 
ROCs  and , respectively, we have 
 

                    (5.31) 
 

Its ROC is denoted by , which includes  where  is 
the intersection operator. That is,  contains at least the 
intersection of  and . 
 

Example 5.15 
Determine the  transform of  which is expressed as: 
 

 
 

where  and . By inspection, 
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the  transforms of  and  are: 
 

and 
 

According to the linearity property, the  transform of  is 
 

 
 

Why the ROC is |z|>0.3 instead of |z|>0.2? 
 

2. Time Shifting 
 

A time-shift of  in  causes a multiplication of  in  
 

         (5.32) 
 

The ROC for  is basically identical to that of  
except for the possible addition or deletion of  or  



H. C. So                                                                        Page 50                                    

Example 5.16 
Find the  transform of  which has the form of: 
 

 
 

Employing the time-shifting property with  and: 
 

 

we easily obtain  
 

 
 

Note that using (5.1) with  also produces the same 
result but this approach is less efficient: 
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3. Multiplication by an Exponential Sequence (Modulation) 
 

If we multiply  by  in the time domain, the variable  
will be changed to  in the  transform domain. That is: 
 

               (5.33) 
 

If the ROC for  is ,  the ROC for  is 
 

 

Example 5.17 
With the use of the following  transform pair: 
 

 
 

Find the  transform of  which has the form of: 
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Noting that ,  can be written as: 
 

 
 

By means of the modulation property of (5.33) with the 
substitution of  and , we obtain: 
 

 

and 
 

 

By means of the linearity property, it follows that 
 

 
  

which agrees with Table 5.1. 
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4. Differentiation 
 

Differentiating  with respect to  corresponds to 
multiplying  by  in the time domain: 
 

                          (5.34) 
 

The ROC for  is basically identical to that of  except 
for the possible addition or deletion of  or  
 

Example 5.18 
Determine the  transform of . 
 
Since  

    

and 
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By means of the differentiation property, we have 
 

 
 

which agrees with Table 5.1. 
 
5. Conjugation 
 

The  transform pair for  is: 
 

                        (5.35) 
 

The ROC for  is identical to that of  
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6. Time Reversal 
 

The  transform pair for  is: 
 

                             (5.36) 
 

If the ROC for  is ,  the ROC for  is 
 

 

Example 5.19 
Determine the  transform of  
 

Using Example 5.18:  

 
 

and from the time reversal property: 
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7. Convolution 
 

Let  and  be two  transform pairs with 
ROCs  and , respectively. Then we have: 
 

                    (5.37) 
 

and its ROC includes .  
 

The proof is given as follows.  
 

Let 
 

                   (5.38) 

 

With the use of the time shifting property,  is: 
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   (5.39)  
  
Transfer Function of Linear Time-Invariant System 
 
A LTI system can be characterized by the transfer function, 
which is a  transform expression 
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Starting with: 

                  (5.40) 

 

Applying  transform on (5.40) with the use of the linearity 
and time shifting properties, we have  
         

                   (5.41) 

 

The transfer function, denoted by , is defined as: 
 

                          (5.42) 
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The system impulse response  is given by the inverse  
transform of  with an appropriate ROC, that is, 

, such that . This suggests that we 
can first take the  transforms for  and , then multiply 

 by , and finally perform the inverse  transform of 
. 

 

Example 5.20 
Determine the transfer function for a LTI system whose 
input  and output  are related by: 
 

 
 

Applying  transform on the difference equation with the use 
of the linearity and time shifting properties,  is: 
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Note that there are two ROC possibilities, namely,  
and  and we cannot uniquely determine  
 

Example 5.21 
Find the difference equation of a LTI system whose transfer 
function is given by 
 

 
 

Let . Performing cross-multiplication and 
inverse  transform, we obtain: 
 

 
 

Examples 5.20 and 5.21 imply the equivalence between the 
difference equation and transfer function 
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Example 5.22 
Compute the impulse response  for a LTI system which is 
characterized by the following difference equation: 
 

 
 

Applying  transform on the difference equation with the use 
of the linearity and time shifting properties,  is: 
 

 
 

There is only one ROC possibility, namely, . Taking the 
inverse  transform on , we get: 
 

 
 

which agrees with Example 3.12 
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Example 5.23 
Determine the output   if the input is   and the 
LTI system impulse response is  
 

The  transforms for  and  are 
 

 

and    
 

 

As a result, we have: 
 

 
 

Taking the inverse  transform of  with the use of the 
time shifting property yields: 
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Chapter 6: Discrete-Time Fourier Transform (DTFT) 
 
Chapter Intended Learning Outcomes: 
 
(i) Understanding the characteristics and properties of DTFT 
 
(ii) Ability to perform discrete-time signal conversion 
between the time and frequency domains using DTFT and 
inverse DTFT 
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Definition 
 

DTFT is a frequency analysis tool for aperiodic discrete-time 
signals 
 
The DTFT of , , has been derived in (5.4): 
 

                          (6.1) 

 

The derivation is based on taking the Fourier transform of 
 of (5.2) 

 
As in Fourier transform,  is also called spectrum and is 
a continuous function of the frequency parameter  
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To convert  to , we use inverse DTFT: 
 

                             (6.2) 

 

Proof: Putting (6.1) into (6.2) and using (4.13)-(4.14): 
 

        (6.3) 
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discrete and aperiodic continuous and periodic

time domain frequency domain

... ...

 
Fig.6.1: Illustration of DTFT 
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 is continuous and periodic with a period of  
 

 is generally complex, we can illustrate  using the 
magnitude and phase spectra, i.e.,  and : 
 
               (6.4)  
and 

                 (6.5) 

 
where both are continuous in frequency and periodic. 
 
Convergence of DTFT 
 

The DTFT of a sequence  converges if 
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(6.6) 

  
Recall (5.10) and assume the  transform of  converges 
for region of convergence (ROC) of : 
 

  (6.7) 

 

When ROC includes the unit circle: 
  

              (6.8) 

 

which leads to the convergence condition for . This 
also proves the P2 property of the  transform. 
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Let  be the impulse response of a linear time-invariant 
(LTI) system, the following three statements are equivalent: 
 
S1. ROC for the  transform of  includes unit circle 
 
S2. The system is stable so that  
 
S3. The DTFT of , i.e., , converges 

 
Note that  is also known as system frequency response 
 
Example 6.1 
Determine the DTFT of . 
 
Using (6.1), the DTFT of  is computed as: 
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Since 
 

 

 
 does not exist. 

 
Alternatively, employing the stability condition: 
 

 

 
which also indicates that the DTFT does not converge 
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Furthermore, the  transform of  is: 
 

 

 
Because  does not include the unit circle, there is no 
DTFT for .  
 
Example 6.2 
Find the DTFT of . Plot the magnitude and 
phase spectra for  . 
 
Using (6.1), we have 
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Alternatively, we can first use  transform because  
 

 
 

The  transform of  is evaluated as 
 

 

  

As the ROC includes the unit circle, its DTFT exists and the 
same result is obtained by the substitution of .  
 

There are two advantages of  transform over DTFT: 
 

  transform is a generalization of DTFT and it 
encompasses a broader class of signals since DTFT does 
not converge for all sequences 
 

 notation convenience of writing  instead of . 
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To plot the magnitude and phase spectra, we express : 
 

 
In doing so,  and  can be written in closed-
forms as: 
 

 

and 

 

 
Note that we generally employ (6.4) and (6.5) for 
magnitude and phase computation 
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In using MATLAB to plot  and , we utilize the 
command sinc so that there is no need to separately 
handle the “0/0” cases due to the sine functions 
 
Recall the definition of sinc function: 
 

 

 
As a result, we have: 
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The key MATLAB code for  is  
 
N=10;               %N=10 
w=0:0.01*pi:2*pi;  %successive frequency point  

%separation is 0.01pi 
dtft=N.*sinc(w.*N./2./pi)./(sinc(w./2./pi)).*exp(-
j.*w.*(N-1)./2);    %define DTFT function 
subplot(2,1,1) 
Mag=abs(dtft);      %compute magnitude                      
plot(w./pi,Mag);    %plot magnitude 
subplot(2,1,2) 
Pha=angle(dtft);    %compute phase 
plot(w./pi,Pha);    %plot phase 
 
Analogous to Example 4.4, there are 201 uniformly-spaced 
points to approximate the continuous functions  and 

.  
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Fig.6.2: DTFT plots using abs and angle 
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Alternatively, we can use the command freqz:  
 

 

 
which is ratio of two polynomials in  
 
The corresponding MATLAB code is: 
 
N=10;       %N=10 
a=[1,-1];        %vector for denominator 
b=[1,zeros(1,N-1),-1]; %vector for numerator 
freqz(b,a)            %plot magnitude & phase (dB) 
 
Note that it is also possible to use  and in 
this case we have b=ones(N,1) and a=1.  
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Fig.6.3: DTFT plots using freqz 
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The results in Figs. 6.2 and 6.3 are identical, although their 
presentations are different: 
 
  at  in Fig. 6.2 while that of Fig. 6.3 is 20 

dB. It is easy to verify that 10 corresponds to  
dB 

 
 units of phase spectra in Figs. 6.2 and 6.3 are radian and 

degree, respectively. To make the phase values in both 
plots identical, we also need to take care of the  phase 
ambiguity.  

 
The MATLAB programs for this example are provided as 
ex6_2.m and ex6_2_2.m. 
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Example 6.3 
Find the inverse DTFT of  which is a rectangular pulse 
within : 
 

 

where . 
 
Using (6.2), we get: 
 

 

 
That is,  is an infinite-duration sequence whose values 
are drawn from a scaled sinc function. 
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Example 6.4 
Determine the inverse DTFT of  which has the form of: 
 

 

 
With the use of , the corresponding  transform is  
 

 

 
Note that ROC should include the unit circle as DTFT exists 
 
Employing the time shifting property, we get 
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Properties of DTFT 
 

Since DTFT is closely related to  transform, its properties 
follow those of  transform. Note that ROC is not involved 
because it should include unit circle in order for DTFT exists 
 
1. Linearity 
 
If  and  are two DTFT pairs, then: 
 

     (6.9) 
 
2. Time Shifting 
 
A shift of  in  causes a multiplication of  in : 
 

                             (6.10) 
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3. Multiplication by an Exponential Sequence 
 
Multiplying  by  in time domain corresponds to a shift 
of  in the frequency domain: 
 

                            (6.11) 
 
which agrees with (5.33) by putting  and  
 
4. Differentiation 
 
Differentiating  with respect to  corresponds to 
multiplying  by : 
 

                          (6.12) 
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Note the RHS is obtained from (5.34) by putting : 
 

         (6.13) 

 
5. Conjugation 
 
 The DTFT pair for  is given as: 
 

                              (6.14) 
 
6. Time Reversal 
 
The DTFT pair for  is given as: 
 

                              (6.15) 
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7. Convolution 
 
If  and  are two DTFT pairs, then: 
 

                    (6.16) 
 
In particular, for a LTI system with input , output  and 
impulse response , we have: 
 
            (6.17) 
 
which is analogous to (2.24) for continuous-time LTI 
systems 
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8. Multiplication 
 
Multiplication in the time domain corresponds to convolution 
in the frequency domain: 
 

  (6.18) 

  

where  denotes convolution within one period 
 
9. Parseval’s Relation 
 
The Parseval’s relation addresses the energy of a sequence: 
 

                    (6.19) 
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With the use of (6.2), the proof is: 
 

  (6.20) 
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Chapter 7: Discrete Fourier Series & Discrete Fourier 
Transform 
 

Chapter Intended Learning Outcomes 
 
(i) Understanding the relationships between the  
transform, discrete-time Fourier transform (DTFT), discrete 
Fourier series (DFS) and discrete Fourier transform (DFT)  
 
(ii) Understanding the characteristics and properties of DFS 
and DFT 
 
(iii) Ability to perform discrete-time signal conversion 
between the time and frequency domains using DFS and 
DFT and their inverse transforms 
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Discrete Fourier Series 
 

DTFT may not be practical for analyzing  because  
is a function of the continuous frequency variable  and we 
cannot use a digital computer to calculate a continuum of 
functional values 
 

DFS is a frequency analysis tool for periodic infinite-duration 
discrete-time signals which is practical because it is discrete 
in frequency 
 

The DFS is derived from the Fourier series as follows.  
 

Let  be a periodic sequence with fundamental period  
where  is a positive integer. Analogous to (2.2), we have: 
 

           (7.1) 
 

for any integer value of .  
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Let  be the continuous-time counterpart of . According 
to Fourier series expansion,   is: 
 

                    (7.2) 

 

which has frequency components at  . 
Substituting ,  and : 
 

                        (7.3) 

 

Note that (7.3) is valid for discrete-time signals as only the 
sample points of  are considered.  
 

It is seen that  has frequency components at 
and the respective complex 

exponentials are  .  
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Nevertheless, there are only  distinct frequencies in  
due to the periodicity of .  
 
Without loss of generality, we select the following  distinct 
complex exponentials, , and 
thus the infinite summation in (7.3) is reduced to: 
 

                                (7.4) 

 
Defining , , as the DFS 
coefficients, the inverse DFS formula is given as: 
 

                                (7.5) 
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The formula for converting  to  is derived as follows.  
 

Multiplying both sides of (7.5) by  and summing 
from  to : 
 

           (7.6) 

 

Using the orthogonality identity of complex exponentials: 
 

        (7.7) 
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(7.6) is reduced to 
 

                         (7.8) 

 

which is also periodic with period . 
 
Let 
                                        (7.9) 
 

The DFS analysis and synthesis pair can be written as: 
 

                         (7.10) 

and 

                           (7.11) 
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discrete and periodic discrete and periodic

time domain frequency domain

... ...... ...

 
Fig.7.1: Illustration of DFS 
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Example 7.1 
Find the DFS coefficients of the periodic sequence  with a 
period of . Plot the magnitudes and phases of . 
Within one period,  has the form of: 
 

 

Using (7.10), we have 
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Similar to Example 6.2, we get: 
 

 

and 

 

 
The key MATLAB code for plotting DFS coefficients is 
 

N=5; 
x=[1 1 1 0 0];               
k=-N:2*N;                   %plot for 3 periods 
Xm=abs(1+2.*cos(2*pi.*k/N));%magnitude computation 
Xa=angle(exp(-2*j*pi.*k/5).*(1+2.*cos(2*pi.*k/N))); 
                            %phase computation 
 

The MATLAB program is provided as ex7_1.m. 
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Fig.7.2: DFS plots 
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Relationship with DTFT 
 

Let  be a finite-duration sequence which is extracted 
from a periodic sequence  of period : 
 

                    (7.12) 

 
Recall (6.1), the DTFT of  is: 
 

                         (7.13) 

 
With the use of (7.12), (7.13) becomes 
 

                (7.14) 
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Comparing the DFS and DTFT in (7.8) and (7.14), we have: 
 
                            (7.15) 
 
That is,  is equal to  sampled at  distinct 
frequencies between  with a uniform frequency 
spacing of .  
 
Samples of  or DTFT of a finite-duration sequence  
can be computed using the DFS of an infinite-duration 
periodic sequence , which is a periodic extension of .  
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Relationship with z Transform 
 

 is also related to  transform of  according to 
(5.8): 
 
                             (7.16) 
 
Combining (7.15) and (7.16),  is related to  as: 
 
                    (7.17) 
 
That is,  is equal to  evaluated at  equally-spaced 
points on the unit circle, namely, .  
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Fig.7.3: Relationship between ,  and  
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Example 7.2 
Determine the DTFT of a finite-duration sequence : 
 

 

 
Then compare the results with those in Example 7.1. 
 
Using (6.1), the DTFT of  is computed as: 
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Fig.7.4: DTFT plots 
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Fig.7.5: DFS and DTFT plots with  
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Suppose  in Example 7.1 is modified as: 
 

 

 
Via appending 5 zeros in each period, now we have .  
 
What is the period of the DFS? 
 
What is its relationship with that of Example 7.2? 
 
How about if infinite zeros are appended? 
 
The MATLAB programs are provided as ex7_2.m, ex7_2_2.m 
and ex7_2_3.m. 
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Fig.7.6: DFS and DTFT plots with  
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Properties of DFS 
 
1. Periodicity 
 

If  is a periodic sequence with period , its DFS  is 
also periodic with period : 
 

          (7.18) 
 
where  is any integer. The proof is obtained with the use of 
(7.10) and  as follows: 
 

   (7.19) 
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2. Linearity 
 

Let  and  be two DFS pairs with the 
same period of . We have: 
 

          (7.20) 
 
3. Shift of Sequence  
 

If , then 
 

                          (7.21) 
and 
                              (7.22) 
 
where  is the period while  and  are any integers. Note 
that (7.21) follows (6.10) by putting  and  (7.22) 
follows (6.11) via the substitution of . 
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4. Duality 
 

If , then 
 
                                   (7.23) 
 
5. Symmetry 
 

If , then 
 
                              (7.24) 
and 
                              (7.25) 
 
Note that (7.24) corresponds to the DTFT conjugation 
property in (6.14) while (7.25) is similar to the time 
reversal property in (6.15). 
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6. Periodic Convolution 
 

 
Let  and  be two DFS pairs with the 
same period of . We have 
 

         (7.26) 

 
Analogous to (6.18),  denotes discrete-time convolution 
within one period.  
 
With the use of (7.11) and (7.21), the proof is given as 
follows:   
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 (7.27) 
 
To compute  where both  and  are of period , 
we indeed only need the samples with .  
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Let . Expanding (7.26), we have: 
 

(7.28) 
 
For : 
 

(7.29) 
 
For : 
 

(7.30) 
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A period of  can be computed in matrix form as: 
 

    (7.31) 

 
Example 7.3 
Given two periodic sequences  and  with period : 
 

 
and 

 
 
Compute . 
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Using (7.31),  is computed as: 
 

 

 
The square matrix can be determined using the MATLAB 
command toeplitz([1,2,3,4],[1,4,3,2]). That is, we 
only need to know its first row and first column. 
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Periodic convolution can be utilized to compute convolution 
of finite-duration sequences in (3.17) as follows.  
 

Let  and  be finite-duration sequences with lengths  
and , respectively, and  which has a length 
of  
 

We append  and  zeros at the ends of  and 
 for constructing periodic  and  where both are of 

period  
 

 is then obtained from one period of . 
 
Example 7.4 
Compute the convolution of  and  with the use of 
periodic convolution. The lengths of  and  are 2 and 3 
with , , ,  and . 
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The length of  is 4. As a result, we append two 
zeros and one zero in  and , respectively. According to 
(7.31), the MATLAB code is: 
 
toeplitz([1,-4,5,0],[1,0,5,-4])*[2;3;0;0] 
 
which gives 
 
2    -5    -2    15 
 
Note that the command conv([2,3],[1,-4,5]) also 
produces the same result. 
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Discrete Fourier Transform 
 

DFT is used for analyzing discrete-time finite-duration 
signals in the frequency domain 
 
Let  be a finite-duration sequence  of length  such that 

 outside  . The DFT pair of  is:  
 

                (7.32) 

and 

              (7.33) 
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If we extend  to a periodic sequence  with period , 
the DFS pair for  is given by (7.10)-(7.11). Comparing 
(7.32) and (7.10),  for . As a result, 
DFT and DFS are equivalent within the interval of  
 

Example 7.5 
Find the DFT coefficients of a finite-duration sequence  
which has the form of 
 

 
 

 

Using (7.32) and Example 7.1 with , we have: 
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Together with  whose index is outside the interval of 
, we finally have: 

 

 

 
If the length of  is considered as  such that 

, then we obtain: 
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The MATLAB command for DFT computation is fft. The 
MATLAB code to produce magnitudes and phases of  is: 
 
N=5;         
x=[1 1 1 0 0];            %append 2 zeros 
subplot(2,1,1);  
stem([0:N-1],abs(fft(x)));  %plot magnitude response 
title('Magnitude Response'); 
subplot(2,1,2); 
stem([0:N-1],angle(fft(x)));%plot phase response 
title('Phase Response'); 
 
According to Example 7.2 and the relationship between DFT 
and DFS, the DFT will approach the DTFT when we append 
infinite zeros at the end of   
 
The MATLAB program is provided as ex7_5.m. 
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Fig.7.7: DFT plots with  
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Example 7.6 
Given a discrete-time finite-duration sinusoid: 
 

 
 
Estimate the tone frequency using DFT. 
 
Consider the continuous-time case first. According to 
(2.16), Fourier transform pair for a complex tone of 
frequency  is: 
 

 
 

That is,  can be found by locating the peak of the Fourier 
transform. Moreover, a real-valued tone  is: 
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From the Fourier transform of ,  and  are located 
from the two impulses.  
 

Analogously, there will be two peaks which correspond to 
frequencies  and  in the DFT for . 
 

The MATLAB code is 
N=21;       %number of samples is 21 
A=2;            %tone amplitude is 2 
w=0.7*pi;    %frequency is 0.7*pi 
p=1;         %phase is 1 
n=0:N-1;     %define a vector of size N 
x=A*cos(w*n+p); %generate tone 
X=fft(x);     %compute DFT    
subplot(2,1,1);  
stem(n,abs(X));   %plot magnitude response 
subplot(2,1,2); 
stem(n,angle(X)); %plot phase response 
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Fig.7.8: DFT plots for a real tone 
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X = 
 1.0806         1.0674+0.2939i   1.0243+0.6130i    
 0.9382+0.9931i   0.7756+1.5027i   0.4409+2.3159i 
-0.4524+4.1068i  -6.7461+15.1792i  6.5451-7.2043i    
 3.8608-2.1316i   3.3521-0.5718i   3.3521+0.5718i 
 3.8608+2.1316i   6.5451+7.2043i  -6.7461-15.1792i   
-0.4524-4.1068i   0.4409-2.3159i   0.7756-1.5027i  
 0.9382-0.9931i   1.0243-0.6130i   1.0674-0.2939i 
 
Interestingly, we observe that  and 

. In fact, all real-valued sequences 
possess these properties so that we only have to compute 
around half of the DFT coefficients. 
 
As the DFT coefficients are complex-valued, we search the 
frequency according to the magnitude plot.  
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There are two peaks, one at  and the other at  
which correspond to  and , respectively.  
 
From Example 7.2, it is clear that the index  refers to 

. As a result, an estimate of  is: 
 

 

 
To improve the accuracy, we append a large number of 
zeros to . The MATLAB code for  is now modified as: 
 

x=[A*cos(w.*n+p) zeros(1,1980)]; 
 
where 1980 zeros are appended.  
 
The MATLAB code is provided as ex7_6.m and ex7_6_2.m. 
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Fig.7.9: DFT plots for a real tone with zero padding 
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The peak index is found to be  with . Thus 
 

 

 
Example 7.7 
Find the inverse DFT coefficients for   which has a length 
of  and has the form of 
 

 

 
Plot . 
 
Using (7.33) and Example 7.5, we have: 
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The main MATLAB code is: 
 
N=5;         
X=[1 1 1 0 0];  
subplot(2,1,1);  
stem([0:N-1],abs(ifft(X))); 
subplot(2,1,2); 
stem([0:N-1],angle(ifft(X))); 
 
The MATLAB program is provided as ex7_7.m. 
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Fig.7.10: Inverse DFT plots 
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Properties of DFT 
 
Since DFT pair is equal to DFS pair within , their 
properties will be identical if we take care of the values of 

 and  when the indices are outside the interval 
 
1. Linearity 
 
Let  and  be two DFT pairs with the 
same duration of . We have: 
 

                 (7.34) 
 
Note that if  and  are of different lengths, we can 
properly append zero(s) to the shorter sequence to make 
them with the same duration. 
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2. Circular Shift of Sequence 
 
If , then 
 
                (7.35) 
 
Note that in order to make sure that the resultant time 
index is within the interval of , we need circular shift, 
which is defined as 
 
                (7.36) 
 
where the integer  is chosen such that 
 
                          (7.37) 
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Example 7.8 
Determine  where  is of length 4 
and has the form of: 
 

 

 
According to (7.36)-(7.37) with ,  is determined 
as: 
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3. Duality 
 
If , then 
 
 

        (7.38) 
 
4. Symmetry 
 

 
If , then 
 
                         (7.39) 
and 
                         (7.40) 
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5. Circular Convolution 
 
Let  and  be two DFT pairs with the 
same duration of . We have 
 

   (7.41) 

 
where  is the circular convolution operator. 
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Fast Fourier Transform 
 

FFT is a fast algorithm for DFT and inverse DFT 
computation.  
 
Recall (7.32): 

           (7.42) 
 

Each  involves  and  complex multiplications and 
additions, respectively.  
 

Computing all DFT coefficients requires  complex 
multiplications and  complex additions.  
 

Assuming that , the corresponding computational 
requirements for FFT are  complex multiplications 
and  complex additions.  
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Direct Computation 

 
FFT 

 Multiplication 
 

 

Addition 
 

 

Multiplication 
 

 

Addition 
 

 
2 4 2 1 2 
8 64 56 12 24 
32 1024 922 80 160 
64 4096 4022 192 384 

 1048576 1047552 5120 10240 
 ~  ~  ~  ~  

Table 7.1: Complexities of direct DFT computation and FFT 
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Basically, FFT makes use of two ideas in its development: 
 
 Decompose the DFT computation of a sequence into 

successively smaller DFTs 
 

 Utilize two properties of : 
 
 complex conjugate symmetry property: 
 

                                    (7.43) 
 
 periodicity in  and : 

 
                          (7.44) 
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Decimation-in-Time Algorithm 
 
The basic idea is to compute (7.42) according to 
 

              (7.45) 

 
Substituting  and  for the first and second 
summation terms: 
 

          (7.46) 
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Using  since , we have: 
 

   (7.47) 
 
where  and  are the DFTs of the even-index and odd-
index elements of , respectively. That is,  can be 
constructed from two -point DFTs, namely,  and . 
 
Further simplifications can be achieved by writing the  
equations as 2 groups of  equations as follows: 
 

        (7.48) 
and 
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(7.49) 
 
with the use of  and . Equations (7.48) and 
(7.49) are known as the butterfly merging equations.  
 
Noting that  multiplications are also needed to calculate 

,  the number of multiplications is reduced from  to 
.  

 
The decomposition step of (7.48)-(7.49) is repeated  times 
until 1-point DFT is reached. 
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Decimation-in-Frequency Algorithm  
 
The basic idea is to decompose the frequency-domain 
sequence  into successively smaller subsequences.  
 
Recall (7.42) and employing  
and ,  the even-index DFT coefficients are:  
 

(7.50) 
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Using  and , the odd-index coefficients are: 
  

(7.51) 

 

 and  are equal to -point DFTs of 
 and , respectively. The 

decomposition step of (7.50)-(7.51) is repeated  times 
until 1-point DFT is reached. 
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Chapter 8: Responses of Digital Filters 
 

Chapter Intended Learning Outcomes:  
 
(i) Understanding the relationships between impulse 
response, frequency response, difference equation and 
transfer function in characterizing a LTI system 
 
(ii) Ability to identify infinite impulse response (IIR) and 
finite impulse response (FIR) filters. Note that a digital filter 
is system which processes discrete-time signals 
 
(iii) Ability to compute system frequency response 
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LTI System Characterization 
 

CD converter discrete-time
LTI system DC converter

Fig.8.1: Processing of analog signal with LTI filter 
 

The LTI system can be characterized as 
 
 Impulse Response 
 

Let  be the impulse response of the LTI filter. Recall from 
(3.17), it characterizes the system via the convolution: 
 

     (8.1) 

 

 is the time-domain response of the LTI filter 



H. C. So                                                                        Page 3                                       

 Frequency Response 
 
We have from (6.17), which is the discrete-time Fourier 
transform (DTFT) of (8.1): 
 
                           (8.2) 
 

 is the frequency-domain response of the LTI filter 
 
 Difference Equation 
 
A LTI system satisfies a difference equation of the form: 
 

             (8.3) 
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 Transfer Function 
 
Taking the  transform on both sides of (8.3): 
 

                             (8.4) 

 
Which of them can uniquely characterize a system? 
Which of them cannot? 
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Example 8.1 
Given the difference equation with input  and output : 
 

 
 
Find all possible ways to compute  given . 
 
In fact, there are two ways to compute .  
 

A straightforward and practical way is to implement a causal 
system by using the difference equation recursively with a 
given initial condition of : 
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On the other hand, it is possible to implement a noncausal 
system via reorganizing the difference equation as: 
  

 

 
In doing so, we need an initial future value of  and 
future inputs, and the recursive implementation is: 
 

 
 
As a result, generally the difference equation cannot 
uniquely characterize the system.  
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Nevertheless, if causality is assumed, then the difference 
equation corresponds to a unique LTI system. 
 
Alternatively, we can also study the computation of  
using system transfer function : 

 
 

 
Since the ROC is not specified, there are two possible cases, 
namely,   and .  
 
For  or  , using inverse  transform: 
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which corresponds to a causal system.  
 
The same result can also be produced by first finding the 
system impulse response  via inverse  transform of 

: 
 

 

 
and then computing .  
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For  or  , using inverse  transform: 
 

 

 

which corresponds to a noncausal system. 
 
Example 8.2 
Discuss all possibilities for the LTI system whose input  
and output  are related by: 
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Taking  transform on the difference equation yields: 
 

 

 
There are 3 possible choices:  
 

: The ROC is outside the circle with radius 
characterized by the largest-magnitude pole. The system 
can be causal but is not stable since the ROC does not 
include the unit circle 
 

: The system is stable because the ROC includes 
the unit circle but not causal 
  

: The system is unstable and noncausal 
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Impulse Response of Digital Filters 
 

When  is a rational function of  with only first-order 
poles, we have from (5.26):   
 

           (8.5) 

 
where the first component is present only if . 
 
If the system is causal, then the ROC must be of the form 

 where  is the largest-magnitude pole. 
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According to this ROC, the impulse response  is: 
 

               (8.6) 

 

There are two possible cases for (8.6) which correspond to 
IIR and FIR filters: 
 
 IIR Filter 
 
If   or there is at least one pole, the system is referred 
to as an IIR filter because  is of infinite duration. 
 
 FIR Filter 
 
If  or there is no pole, the system is referred to as a 
FIR filter because  is of finite duration. 
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Notice that the definitions of IIR and FIR systems also hold 
for noncausal systems. 
 
Example 8.3 
Determine if the following difference equations correspond 
to IIR or FIR systems. All systems are assumed causal. 
 
(a)  
(b)  
 
Taking the  transform on (a) yields 
  

 

 
which has one pole. For causal system:  
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which is a right-sided sequence and corresponds to an IIR 
system as  is of infinite duration. 
 
Similarly, we have for (b): 
 

 

  
which does not have any nonzero pole. Hence 
 

 
 
which corresponds to a FIR system as  is of finite 
duration.  
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Frequency Response of Digital Filters 
 

The frequency response of a LTI system whose impulse 
response  is obtained by taking the DTFT of : 
 

                                     (8.7) 

 
According to (5.8),  is also obtained if  is available: 
 

                (8.8) 

 
assuming that the ROC of  includes the unit circle. 
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Example 8.4 
Plot the frequency response of the system with impulse 
response  of the form: 
 

 

where 
 

 

Following Example 7.6, we append a large number of zeros 
at the end of  prior to performing discrete Fourier 
transform (DFT) to produce more DTFT samples.  
 
Is it a low-pass filter? Why? 
 
The MATLAB program is provided as ex8_4.m. 



H. C. So                                                                        Page 17                                       

0 0.5 1 1.5 2
0

5

10

Magnitude Response

ω/p

0 0.5 1 1.5 2
-4

-2

0

2

4
Phase Response

ω/p
 

Fig.8.2: Frequency response for sinc  
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Example 8.5 
Plot the frequency response of the system with transfer 
function  of the form: 
 

 

 
It is assumed that the ROC of  includes the unit circle. 
 

The MATLAB code is 
 

b=[1,2,3]; 
a=[2,3,4]; 
freqz(b,a); 
 
Is it a lowpass filter? Why? 
 
The MATLAB program is provided as ex8_5.m. 
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Fig.8.3: Frequency response for second-order system 
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Chapter 9: Realization of Digital Filters 
 
Chapter Intended Learning Outcomes: 
 
(i) Ability to implement finite impulse response (FIR) and 
infinite impulse response (IIR) filters using different 
structures in terms of block diagram and signal flow graph 
 
(ii) Ability to determine the system transfer function and 
difference equation given the corresponding block diagram 
or signal flow graph representation. 
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Filter Implementation 
 
When causality is assumed, a LTI filter can be uniquely 
characterized by its transfer function : 
 

                             (9.1) 

 

or the corresponding difference equation: 
 

                       (9.2) 

 
where  and  are the system input and output 
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Assuming , the output is: 
 

                 (9.3) 

 
Assigning  and  yields 
 

    (9.4) 

 
Computing  involves  and 

. That is, we need 
 

 Delay elements or storage 
 

 Multipliers 
 

 Adders (subtraction is considered as addition) 
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How many storage elements are needed? 
How many multipliers are needed? 
How many adders are needed? 
 
Computations of ][ny  can be arranged in different ways to 
give the same difference equation, which leads to different 
structures for realization of discrete-time LTI systems 
 

4 basic forms of implementations, namely, direct form, 
canonic form, cascade form and parallel form will be 
described 
 

An implementation can be represented using either a block 
diagram or a signal flow graph 
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Block Diagram Representation 
 
 

adder

multiplier

unit delay
 

 
Fig.9.1: Basic operations in block diagram 
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Although an adder can generally deal with more than two 
sequences, here we consider two signals in order to align 
with practical implementation in microprocessors. 
 
When , it corresponds to signal amplification while the 
signal is attenuated for . Note that a multiplier usually 
has the highest implementation or computational cost and 
thus it is desired to reduce the number of multipliers in 
different systems, if possible. 
 
The transfer function  corresponds to a unit delay. It can 
be implemented by providing a storage register for each 
unit delay in digital implementation. If the required number 
of samples of delay is , then the corresponding system 
function is . 
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Signal Flow Graph Representation 
 

adder

multiplier

unit delay  
 

Figure 9.2: Basic operations in signal flow graph 
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Its basic elements are branches with directions, and nodes. 
That is, a signal flow graph is a set of directed branches 
that connect at nodes. 
 

Signal at a node of a flow graph is equal to the sum of the 
signals from all branches connecting to the node.  
 

Signal out of a branch is equal to the branch gain times the 
signal into the branch.  
 
Branch gain can refer to a scalar or a transfer function of  
corresponding to multiplication or unit delay operation, 
respectively.  
 
When the branch gain is unity, it is left unlabeled. 
 
A signal flow graph provides an alternative but equivalent 
graphical representation to a block diagram structure 
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Example 9.1 
Draw the block diagram and signal flow graph 
representations of a LTI system whose input  and output 

 satisfy the following difference equation: 
 

 
 

 
Fig.9.3: Illustration of block diagram 
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Fig.9.4: Illustration of signal flow graph 

 
2 adders, 3 multipliers and 2 delay elements are required to 
implement the system. 
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Structures for FIR Filter 
 

For FIR filter, its transfer function does not contain pole. 
That is, setting  and  in (9.1) yields 
a FIR system: 
 

                 (9.5) 

 
while the corresponding difference equation is: 
 

             (9.6) 
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1. Direct Form 
 

Comparing (9.6) with the convolution formula of (3.18),  
correspond to the system impulse response : 
 
                             (9.7) 

 
(9.6) can also be written as: 
 

   (9.8) 

 
The direct form follows straightforwardly from the difference 
equation. 
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The implementation needs  memory locations for storing 
 previous inputs of ,  multiplications and   

additions for computing each output value of . 
 

 
 

Fig.9.5: Direct form of FIR filter 
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2. Cascade Form 
 

Expressing (9.5) as products of second-order polynomial 
system functions via factorization: 
 

             (9.9) 

 
where  is the largest integer contained in  

. Note that when  is odd, one of the  will be 
zero. Assuming that  is even, this implementation needs 

 storage elements,  multiplications and  additions, 
for computing each output value of . 
 
Why second-order polynomial instead of first-order 
polynomial? 
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Fig.9.6: Cascade form of FIR filter 
 
            (9.10) 
and 
            (9.11) 
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Taking  transform on (9.10) and (9.11): 
 

            (9.12) 
and 

         (9.13) 
 

Substituting (9.13) into (9.12) yields: 
 

  (9.14) 
  
Extending (9.14) to , we finally get: 
 

 (9.15) 
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To save the computational complexity, we express (9.9) as: 
 

           (9.16)  

 
where ,  and , 

. That is, all  are normalized to 1.  
 
Assuming that  is even, (9.16) needs  delay elements, 

 multiplications and   additions, for computing each 
output value of  
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Fig.9.7: Cascade form of FIR filter with smaller complexity 
 
Example 9.2 
Draw the signal flow graph using the cascade form for the 
LTI system whose transfer function is: 
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To factorize , we use the MATLAB command roots([1 1 
1 1 1]) to solve for the roots: 
 

0.3090 + 0.9511i 
0.3090 - 0.9511i 
-0.8090 + 0.5878i 
-0.8090 - 0.5878i 
 
Hence    can be factorized as 
 

 
  
Although it can be realized with first-order sections, 
complex coefficients are needed, which implies higher 
computational cost. To guarantee real-valued coefficients, 
we group the sections of complex conjugates together: 
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Fig.9.8: Two possible cascade forms for FIR filter 
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Structures for IIR Filter 
 

When there is at least one pole in , it corresponds to an 
IIR filter. The corresponding transfer function is thus: 
 

                          (9.17) 

 
That is, IIR filter is the general form of any discrete-time 
LTI system. 
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1. Direct Form 
 

It realizes (9.4) in an explicit manner via decomposing it 
into a pair of difference equations: 
 

                          (9.18) 

and 

                        (9.19) 

 
The direct form can also be obtained by decomposing  
into two transfer functions as: 
 
                         (9.20) 
where 



H. C. So                                                                        Page 23                                       

                                (9.21) 

and 
                         (9.22) 

 
In the  transform domain, we have: 
 

                 (9.23) 

and 
                (9.24) 
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Fig.9.9: Direct form of IIR filter 
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The direct form implementation needs  memory 
locations,  multiplications and   additions, 
for computing each output value of . 
 
2. Canonic Form 
 

On the other hand, we can first pass  through the filter 
 to produce an intermediate signal . The  is then 

passed through the system  to give : 
 

              (9.25) 

and 

     (9.26) 
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Applying inverse  transform, we get: 
 

                    (9.27) 

and 

                         (9.28) 

 
which can be considered as an alternative direct form. 
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Fig.9.10: Alternative direct form of IIR filter 
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Assume . Since the same signals 
, are stored in the two chains of 

storage elements, they can be combined to reduce the 
memory requirement.  
 
In general, the minimum number of delay elements 
required is .  
 
It is called canonic form because this implementation 
involves the minimum number of storages. 
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Fig.9.11: Canonic form of IIR filter 
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Example 9.3 
Draw the block diagrams using the direct and canonic forms 
for the LTI system whose transfer function is: 
 

 

 
According to (9.18)-(9.19): 
 

 
 

 
Based on (9.27)-(9.28): 
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Fig.9.12: Direct form of second-order IIR filter 

 

 
Fig.9.13: Canonic form of second-order IIR filter 
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3. Cascade Form 
 

We factorize the numerator and denominator polynomials in 
terms of second-order polynomial system functions as: 
 

      (9.29) 

 
Without loss of generality, it is assumed that   so that 

. Note that when  or  is odd, one of the 
 or  will be zero.  
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Each second-order subsystem 
 

                            (9.30) 

 
can be realized in either the direct or canonic form. 
Nevertheless, the canonic form is preferred because it 
requires the minimum number of delay elements. 
 
In IIR filter implementation, we can group the numerator 
and denominator of (9.30) in different ways, leading to 
different pole and zero combinations in each of the second-
order sections.  
 
For example, there are four possible cascade realizations for 
a fourth-order IIR filter with . 
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Fig.9.14: 4 possible cascade realizations for 4th-order IIR filter 
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To save the computational complexity, we express (9.29) as 
 

                    (9.31) 

 
where ,  and , 

.  
 
Assuming that  is even with , the cascade 
implementation of (9.31) needs or  delay elements, 

 multiplications and   additions, for computing 
each . That is, its memory and computational 
requirements are equal to those of the direct form. 
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Example 9.4 
Draw the signal flow graph using the cascade form with 
first-order sections for the LTI system whose transfer 
function is: 
 

 

 
For each first-order section, canonic form is assumed. 
 
Solving the quadratic equations of the numerator and 
denominator polynomials, we can factorize  as: 
 

 

There are four possible cascade forms for : 
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Note that although all four realizations are equivalent for 
infinite precision, they may differ in actual implementation 
when finite-precision numbers are employed. 
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Fig.9.15: 4 possible cascade realizations with 1st-order sections 
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Example 9.5 
Consider a LTI system whose transfer function  is: 
 

 

 
Find the number of possible combinations of cascade form 
with second-order sections. Determine if the system is 
stable or not. 
 
Further factorizing  yields: 
 

 



H. C. So                                                                        Page 41                                       

For the numerator polynomials, there are 3 grouping 
possibilities in terms of second-order sections as follows: 
 

 

 
There are also 3 grouping possibilities for the denominator: 
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Each fourth-order IIR filter can be realized in four possible 
cascade forms.  
 
As a result, the number of possible cascade form 
combinations with second-order sections for  is 

. 
 
When implementing a filter, causality is always assumed 
because it is impossible to realize a noncausal system 
where the output depends on future input. It is clear that 
the region of convergence (ROC) for causal  is . 
Since the ROC does not include the unit circle, the system is 
not stable.  
 
In summary, a causal system is stable when all poles are 
inside the unit circle. 
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4. Parallel Form 
 

The idea of the parallel form is similar to the partial fraction 
expansion of  transform: 
 

           (9.32) 

 
where . But now we use second-order 
sections in order to ensure all , ,  and  are 
real.  
 
Note that when , the first summation term in (9.32) 
will not be included. 
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Example 9.6 
Draw the block diagram using parallel form for a LTI system 
whose transfer function is: 
 

 

 
Following the long division as in Example 5.9, we obtain: 
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Fig.9.16: Parallel form with second-order section 

 
As the poles of  are real, we can also express  in 
terms of first-order sections as: 
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Fig.9.17: Parallel form with first-order sections 
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Example 9.7 
Determine the transfer function  and the difference 
equation which relates  and  for 

 
Fig.9.18: LTI system parameterized by  and  
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We first introduce an intermediate sequence  to relate 
 and . Then we can establish: 

 
 

and 
 

 
Applying  transform yields: 
 

 
and 

 
 
From the second equation, we have: 
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Substituting it into the first equation, we finally have: 
 

 

 
Taking the inverse  transform gives: 
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Comparison of Different Structures 
 

The major factors that affect our choice of a specific 
realization are computational complexity, memory 
requirement, and finite word-length effects. Assuming that 

 is even with : 
  

Structure Multiplication Addition Register 
Direct form    
Cascade form    

Table 9.1: FIR filter structure comparison 
 

Structure Multiplication Addition Register 
Direct form    
Canonic form    
Cascade form    
Parallel form    

Table 9.2: IIR filter structure comparison 
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Computations of the direct form can be reduced if the FIR 
filter coefficients are symmetric or anti-symmetric.  
 

When the filter coefficients are expressed using infinite 
precision numbers, all realizations are same. However, in 
practice, they are processed in registers which have finite 
word-lengths. In the presence of quantization errors, the 
cascade and parallel realizations are more robust than the 
direct and canonic forms, that is, they have frequency 
responses closer to the desired responses.  
 

FIR filters are less sensitive than IIR filters to finite word-
length effects. 
 

For a feasible system, it should be causal and stable.  
 

In cascade and parallel realizations of IIR filters, system 
stability can be easily monitored by checking pole locations. 
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Chapter 10: FIR Filter Design 
 
Chapter Intended Learning Outcomes: 
 
(i) Understanding of the characteristics of linear-phase finite 
impulse response (FIR) filters 
 
(ii) Ability to design linear-phase FIR filters according to 
predefined specifications using the window and frequency 
sampling methods 
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Steps in Digital Filter Design 
 
1. Specification Determination 
 

The first step is to obtain the filter specifications or 
requirements which are determined by the applications.  
 
Suppose the requirement is a lowpass filter with cutoff 
frequency of  to achieve a task of noise reduction 
 
The filter specification can be described by discrete-time 
Fourier transform (DTFT) :  
 
             (10.1) 

 
which specifies both the magnitude and phase 
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Fig.10.1: Ideal lowpass filter 

 
 unity gain for the whole range of   

 

 complete suppression for  
 

 step change in frequency response at  
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passband transition stopband

 
Fig.10.2: Practical  

 
 passband corresponds to  where  is the 

passband frequency and  is the passband ripple or 
tolerance which is the maximum allowable deviation from 
unity in this band 
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 stopband corresponds to  where  is the 
stopband frequency and  is the stopband ripple or 
tolerance which is the maximum allowable deviation from 
zero in this band 
  

 transition band corresponds to  where there are 
no restrictions on  in this band  

 
2. Filter Response Calculation 
 

We then use digital signal processing techniques to obtain a 
filter description in terms of transfer function  or 
impulse response   that fulfills the given specifications 
 
3. Implementation 
 

When  or  are known, the filter can then be realized 
in hardware or software according to a given structure 
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Advantages of FIR Filter 
 

Transfer function of a causal FIR filter  with length  is: 
 

                          (10.2) 

 
where  is the finite-duration impulse response 
 

 Phase response can be exactly linear which results in 
computation reduction and zero phase distortion. Note 
that when there is phase distortion, different frequency 
components of a signal will undergo different delays in the 
filtering process 
 

 It is always stable because  for finite  
 

 Less sensitive to finite word-length effects 
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 Efficient implementation via digital signal processors with 
multiply-and-add (MAC) instruction 
 

 Existence of optimality theorem for FIR filter design 
 
Linear-Phase FIR Filter 
 

The phase response of a linear-phase filter is a linear 
function of the frequency : 
 

               (10.3)
                        

where  equals 0 or  and  is a constant which is function 
of the filter length.  
 

Note that (10.3) is slightly different from that in previous 
chapters where the phase response complements with the 
magnitude response .  
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Here, the phase response is related to   by 
 

                        (10.4)
  

where   is real and is called the amplitude response.  
 
Comparing 

                           (10.5) 
 
where  is nonnegative, we see that when  is 
positive, the phase responses in (10.4) and (10.5) are 
identical but there is a phase difference of  for a negative 

. 
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Example 10.1 
Determine the amplitude response and the corresponding 
phase response for a FIR filter with impulse response : 
 

 
 
Plot the spectra for . Compare the results with the 
magnitude response and the corresponding phase response. 
 
Using Example 6.2: 
 

 
 

Hence the amplitude response is 
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and the corresponding phase response is 
 

 

 
On the other hand, the magnitude response and the 
corresponding phase response are: 
 

 

and 

 

 
The MATLAB program is provided as ex10_1.m. 
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Fig.10.3: Amplitude and phase spectra 
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Fig.10.4: Magnitude and phase spectra 
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For a causal linear-phase FIR filter, the impulse response 
 is either symmetric or anti-symmetric: 

 
    (10.6) 

or 
   (10.7) 

 

For example, when   is even in (10.7): 
 

, ,  
 

(10.8) 



H. C. So                                                                        Page 14                                          

How many multipliers and additions are needed?  
 
Example 10.2 
Draw the block diagram using the direct form with minimum 
number of multiplications for the FIR filter whose impulse 
response is: 
 

 
 
Following (10.8), we obtain: 
 

 
 
The number of multiplications is reduced from  to  while 
the number of additions remains unchanged, which is 4.  
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Fig.10.5: Block diagram for symmetric impulse response 
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There are four types of linear-phase FIR filters: 
 
1. Symmetric Impulse Response with Odd  
 
Taking the DTFT of  yields 
      

(10.9) 

 
where  and  is an integer.  
 
 
 
 
 
 



H. C. So                                                                        Page 17                                          

Example 10.3 
The impulse response  of a causal FIR filter satisfies  
 

,  
 
with  is odd. Show that 
 

 

 
According to (10.6) with odd , we have   
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Hence  
 

 

 

which validates (10.9) with . 
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2. Symmetric Impulse Response with Even  
 
The DTFT of  is: 

       (10.10) 

 

where  and  is not an integer.  
 
3. Anti-symmetric Impulse Response with Odd  
 
The DTFT of  is: 
        

 (10.11) 
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where  and  is an integer 
 
Note that  due to anti-symmetric property 
 
4. Anti-symmetric Impulse Response with Even  
 
Taking the DTFT of  yields: 
 

   (10.12) 

 
where  and  is not an integer.  
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Example 10.4 
Consider an input sequence  of length 400 such that 

 for  and , and it is a sinusoid 
with frequencies  and  for  and 

, respectively. 
 
Examine the filter output  with the following two FIR 
systems: 
 
(a)  with  
(b)  with  
 
Are they linear phase filters? 
 
The MATLAB program for this example is provided as 
ex10_4.m. 
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Fig.10.6: Pulsed sinusoid with two frequencies 
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Fig.10.7: Filter output with nonlinear-phase filter 
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Fig.10.8: Filter output with linear-phase filter 
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Example 10.5 
The impulse response of a causal linear-phase FIR  is: 
 

 
 
where . Determine . Plot the amplitude and 
phase responses and then deduce the function of the filter. 
Find the expected filter output  when passing an input 
sequence of the form  through the filter. 
 
As  is odd and  is anti-symmetric, we apply (10.11): 
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Fig.10.9: Amplitude and phase responses of differentiator 
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The amplitude response can be approximated as: 
 

 

 
According to the time-shifting property, the DTFT of  with 
a time advance of 5 samples is then: 
 

 

 
This means that the causal FIR filter has a frequency 
response approximately equals  with a delay of 5 
samples.  
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The system with frequency response  is known as the 
differentiator. Recall: 
 

 

 
Differentiating both sides with respect to  yields: 
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which confirms: 
 

 

 
As a result, we expect the output  is close to: 
 

 

 
with a delay of 5 samples 
 
The MATLAB program is provided as ex10_5.m. 
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Fig.10.10: Differentiator output with sinusoidal input 
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Window Method 
 
Based on directly approximating the desired frequency 
response  
 

Ideal impulse response  is calculated from inverse DTFT: 
 
 

    (10.13) 

 
 

What are the problems in using (10.13)? 
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Example 10.6 
Determine the impulse response  of an ideal lowpass 
filter with a cutoff frequency of . The DTFT of the filter is: 
 

 

  
Using Example 6.3,  is: 
 

 

where 
 

 
Ideal filter is noncausal and its impulse response is of 
infinite length 
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The basic idea of window method is to truncate  to 
obtain a linear-phase and causal FIR filter via 2 steps: 
 

 Windowing 
 

 Extract a finite set of  with positive and negative time 
indexes because the impulse response is generally 
symmetric or anti-symmetric around , say, { , 

} corresponding to a length of  
 

 Filter response is linear phase but is only an 
approximation of  due to the coefficient truncation 

 

 Time Shifting 
 

 Delay  by  samples to 
obtain  with  to achieve causality 

 

 Filter output is received after a delay of  samples 
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Example 10.7 
Use the window method to design a linear-phase and causal 
FIR system with 7 coefficients to approximate an ideal 
lowpass filter whose cutoff frequency is . 
 
From Example 10.6: 
 

 

 
Via windowing, we extract the set of . 
Notice that  is symmetric around at  as .  
 
Their values are calculated as: 
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Via time-shifting of 3 samples, a causal filter is obtained as: 
 

: 
or 

 
 

with . 
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Fig.10.11: Magnitude response of lowpass filter with  
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Note that we can use the MATLAB command 
fir1(6,0.1,boxcar(7),'noscale') to produce  
 
Alternatively, we can first perform the time shifting prior to 
windowing  
 
As there should be a phase of  where  in the 
practical filter, we modify the desired frequency response as: 
 

 

 
Note that multiplying  in the frequency domain 
corresponds to a time shift of  in the time domain.  
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The corresponding impulse response is 
 

 

 
As the filter length is , we then perform windowing on 

: 
 

 

 
Substituting  and  yields the same FIR impulse 
response.  
 
Note that we can base on this approach to determine  
even when  is an even integer 
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The truncation operation can be considered as multiplying 
 by a rectangular window function: 

 
 

That is, 
 

 
 
Generally speaking,  is not restricted to be rectangular 
and it can be any symmetric function so that the resultant 
filter is linear phase 
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Example 10.8 
Use the window method to design a linear-phase and causal 
FIR filter of length 101 such that the sampled version of a 
continuous-time sinusoid with frequency of 80 Hz can pass 
through it with negligible attenuation while the sampled 
signal corresponds to a tone of frequency 120 Hz will be 
suppressed. The sampling frequency is 1000 Hz. 
 
Let the continuous-time sinusoids be 
 

 
 
From (4.1), the corresponding discrete-time versions with 
sampling interval of   s are 
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which gives: 
 

and 
 

   
The frequencies are  and  in discrete-time domain.   
 
In order to suppress   while keeping , we can use a 
lowpass filter with cutoff frequency of , which is 
simply the average of the two discrete frequencies. 
 
Using Example 10.7 with  and , the required 
filter impulse response  is: 
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Fig.10.12: Impulse response of lowpass filter with  
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Fig.10.13: Magnitude response of lowpass filter with  
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Fig.10.14: Discrete-time tone with frequency  
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Fig.10.15: Discrete-time tone with frequency  
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Fig.10.16: Filter output for frequency  
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Fig.10.17: Filter output for frequency  
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Analysis of Windowing 
 
To incorporate passband and stopband frequencies and 
ripples in the FIR filter design, we need to study the 
windowing effect 
 
Recall 

                            (10.14) 
 
According to the multiplication property of (6.18): 
 

     (10.15) 
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Fig.10.18: Illustration of  
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 is a smeared version of ideal  
 

 has a peaky main lobe and several side lobes of 
smaller magnitudes 
 
Main lobe produces the transition band in . That is, the 
transition width is proportional to the main lobe width, 
which is inversely proportional to the filter length  
 
Side lobes are responsible to produce the ripples in the 
passband and stopband with  
 

 approaches  when  has the smallest main 
lobe width and side lobe magnitude. That is, the ideal but 
not practical form of  gives  
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 Rectangular Window 
 

        (10.16)     
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Fig.10.19: Rectangular window function for  
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From Example 10.1: 
 

         (10.17)

                                         
The main lobe width is 
 

                 (10.18) 

 
which is proportional to the filter transition width 
 
That is, transition width decreases as the filter length  
increases.  
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Fig.10.20: Magnitude responses of rectangular window for  &  
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Relative peak side lobe, , is the ratio of the peak side lobe 
height to main lobe height in dB: 
 

   (10.19) 

 
A larger  implies ripples with bigger magnitudes  
 

As  increases, widths of the main lobe and all side lobes 
decrease but their areas remain unchanged, meaning that 
the ripples cannot be reduced.  
 
This is known as Gibbs phenomenon due to sudden change 
in transition from 0 to 1 and 1 to 0. This can be removed by 
tapering the window smoothly to zero at each end. However, 
the heights of the side lobes can be diminished but at the 
expense of wider main lobe and hence a wider transition. 
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 Bartlett Window 
 

  (10.20) 
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Fig.10.21: Bartlett window function for  
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 Hanning Window 
 

  (10.21) 
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Fig.10.22: Hanning window function for  
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 Hamming Window 
 

  (10.22) 
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Fig.10.23: Hamming window function for  
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 Blackman Window 
 

(10.23) 
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Fig.10.24: Blackman window function for  
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Note that by using  terms for a filter length of  and 
then discarding the end points, we can avoid zero 
coefficients at both ends for Bartlett, Hanning and Blackman 
windows. 
 

Window   (dB) 
Rectangular   
Bartlett   
Hanning   
Hamming   
Blackman   

Table 10.1: Characteristics of window functions 
 
As a result, there is a tradeoff between transition and ripple 
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Example 10.9 
Use the window method to design a linear-phase and causal 
FIR system to approximate an ideal lowpass filter whose 
cutoff frequency is . Try the rectangular and Bartlett 
window functions with filter lengths of 7, 21, 61 and 101, to 
investigate the frequency magnitude responses. 
 
Using Example 10.7,  with the rectangular window is: 
 

 
 

with  equals 7, 21, 61 and 101 and .  
 

Multiplying  by (10.20) yields the corresponding filter 
coefficients for the Bartlett window.  
 

The MATLAB program is provided as ex10_9.m. 
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Fig.10.25: Magnitude responses with rectangular window at different  
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Fig.10.26: Magnitude responses with Bartlett window at different  
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Example 10.10 
Use the window method to find the impulse response of a 
linear-phase and causal FIR filter which approximates an 
ideal lowpass filter whose cutoff frequency is . It is 
required that the filter is of fourth-order and Bartlett 
window is employed. 
 
A fourth-order filter implies a filter length of . Using 
Example 10.7 with  and : 
 

 

 
To avoid zero coefficients, we set  in (10.20) and 
extract the middle 5 values to yield  
with .  
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As a result 
 

 
 
with  
 

 is: 
 

 
 
The MATLAB command fir1(4,0.25,triang(5),'noscale') 
can also produce . 
 
Note that if we use   in (10.20),  
with . The resultant impulse response will be 

 with , indicating that the 
effective length is only 3 
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In window method, the ripple is: 
 

 
 
And the transition width is: 
 

 
with 

 
 
They are determined from  in (10.15), 
which is not straightforward for computation 
 
Nevertheless, by noting that (10.15) corresponds to one of 
the forms in (10.9)-(10.12),  is easily obtained by 
extracting the amplitude 
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Step 1: Find

Step 2: Find

Step 3: Find

Step 4: Find

 
Fig.10.27: Steps to find passband and stopband ripples and frequencies 
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Example 10.11 
Use the window method with the rectangular window to find 
the impulse response of a linear-phase and causal FIR filter 
which approximates an ideal lowpass filter whose cutoff 
frequency is . It is required that the filter has a 
length of . Plot its amplitude response and then 
determine , , ,  and . 
 
Using Example 10.7 with  and ,  is: 
 

 

 
As  is symmetric and  is odd, from (10.9): 
 

 



H. C. So                                                                        Page 68                                          

0 0.45470.5453 1

-0.0912

0.0912

0.9088

1.0912

N=21

ω/π  
Fig.10.28: Measuring parameters from  
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We see that 
 

 
Peak approximation error, , which is the ripple in dB, is: 
 

 
 
Furthermore 

 
and 

 
which gives 

 
with 

 
 

The MATLAB program is provided as ex10_11.m. 
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Window   (dB) 
Rectangular   
Bartlett   
Hanning   
Hamming   
Blackman   

Table 10.2: Transition width and ripple due to different 
window functions 
 
Example 10.12 
Use the window method to design a linear-phase and causal 
FIR filter which approximates an ideal lowpass filter whose 
cutoff frequency is . The maximum allowable 
transition width is  and the maximum allowable 
tolerance is . 
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The ripple of  corresponds to: 
 

 
 
From Table 10.2, Hamming and Blackman windows are the 
two candidates which can meet the ripple requirement 
 
We choose the former because it involves a shorter filter 
length. The required length for the Hamming window is: 
 

 
 
Using Example 10.7 with  and , the filter 
impulse response is: 
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Fig.10.29: Magnitude response with Hamming window 
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Fig.10.30: Amplitude response with Hamming window 
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Fig.10.31: Zoomed amplitude responses with Hamming window 
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In summary: 
 

 dB or  
and 

 
with 

 
 
The designed filter meets the given specifications although 
it has a much smaller ripple than the desired value. 
  
The MATLAB program is provided as ex10_12.m. 
 
Extension to Typical Frequency Selective Filter Design 
 

For typical frequency selective filters, namely, highpass, 
bandpass and bandstop filters, inverse DTFT can be used  
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lowpass

bandpass

highpass

bandstop

Fig.10.32: Typical frequency-selective filters 
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Nevertheless, we can utilize the lowpass filter to obtain 
impulse responses for ,  and  
 
A highpass filter can be considered as subtraction of a 
lowpass filter from an allpass filter: 
 

 (10.24) 

 
Assuming rectangular window: 
 

   (10.25) 
 

where  
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Example 10.13 
Use the window method with the rectangular window to find 
the impulse response of a linear-phase and causal FIR filter 
which approximates an ideal highpass filter whose cutoff 
frequency is . It is required that the filter has a 
length of .  
 
According to (10.25) with  and : 
 

 
 
Note that we can also use the MATLAB command 
fir1(20,0.5,'high',boxcar(21),'noscale') to get the 
same result 
 
The MATLAB program is provided as ex10_13.m. 
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Fig.10.33: Impulse response of highpass filter with  
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Fig.10.34: Magnitude response of highpass filter with  
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Similarly, an ideal bandpass filter can be designed from 
subtraction of two lowpass filters with cutoff frequencies  
and : 
 

      (10.26) 

 
An ideal bandstop filter impulse response can be obtained 
by subtracting a bandpass filter from an allpass filter: 
 

  (10.27) 
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Kaiser Window 
 
A problem in typical window functions is that we cannot 
control the ripple   
 
Kaiser window can control both  and  in a nearly optimal 
manner and it has the form of: 
 

  (10.28) 

 
where  is the modified zero-order Bessel function. Apart 
from , there is  which is responsible for the window shape 
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That is, by properly choosing  and , the design 
specifications in terms of  and  can be precisely met 
 

 is computed as: 
 

    (10.29) 

 
where  is the peak approximation error and  
rounds up  to the nearest integer  
 
 is determined from: 

 

 (10.30) 
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Example 10.14 
Use the window method with the Kaiser window to design a 
linear-phase and causal FIR filter which approximates an 
ideal lowpass filter whose cutoff frequency is . The 
maximum allowable transition width is  and the 
maximum allowable tolerance is . 
 
Since 

 
 
and , we then have: 
 

 

and 
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As a result, the filter impulse response is: 
 

 

 
where  is determined from (10.28). 
 
In summary: 

 dB or  
 

 
with 

 
 
The designed filter exactly meets the given specifications  
 

The MATLAB program is provided as ex10_14.m. 
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Fig.10.35: Magnitude response with Kaiser window 
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Fig.10.36: Amplitude response with Kaiser window 
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Fig.10.37: Zoomed amplitude responses with Kaiser window 
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Frequency Sampling Method 
 
The basic idea is to utilize the discrete Fourier transform 
(DFT), which corresponds to samples of the desired 
frequency response , to produce  
 

Recall: 
        (10.31)  

 
is equal to  sampled at  distinct frequencies between 

 with a uniform frequency spacing of  
 

A causal and linear-phase filter is designed with 2 steps: 
 

 Extract  uniformly-spaced samples from  in the 
frequency range of  
 

 Compute  by taking the inverse DFT of : 
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    (10.32)  

 
Taking  transform of : 
 

             (10.33)  
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The filter frequency response is then: 
 

             (10.34)  

 
From (10.33) and (7.7) together with (10.31): 
 

  (10.35) 
 
It is simple as only uniformly-spaced samples of the desired 
frequency response or the DFT coefficients are needed  
 
At , ,  equals  but we 
cannot control the values of the remaining frequency points 
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It lacks flexibility in specifying the passband and stopband 
cutoff frequencies since placement of “1” & “0” & transition 
samples is constrained to integer multiples of  
 
Example 10.15 
Use the frequency sampling method to design a linear-
phase and causal FIR filter with a length of  to 
approximate an ideal lowpass filter whose cutoff frequency 
is  . 
 
From Example 10.7, the ideal frequency response with 
linear phase is  
 

 

 
where  and  
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We consider the frequency interval of : 
 

 

 
Extracting the values of   at , : 
 

 

 
Taking the inverse DFT: 
 

 
 

The MATLAB program is provided as ex10_15.m. 
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Fig.10.38: Magnitude response based on frequency sampling 
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Fig.10.39: Amplitude response based on frequency sampling 
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Optimal Equiripple Method 
 
The basic idea is to evenly distribute the ripples in both 
passband and stopband 
 
 Required filter length will be shorter than that of the 

window method where its  exactly meets the 
passband or stopband ripple specification at one 
frequency and is superior to it at other frequencies in the 
band 

 
 Allow   
 
 Passband and stopband frequencies can be precisely 

specified although  and  are 
implicitly implied in the window method 
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Fig.10.40: Illustration of optimal equiripple lowpass filter 

 
Ripples are uniformly distributed such that  reaches its 
maximum deviations of  and  more than once 
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The impulse response  of optimal equiripple design is 
determined from: 
 

 (10.36) 

 
where 

             (10.37) 
 
which corresponds to a minmax optimization problem 
 

 is the frequency-domain error between the desired 
and actual responses weighted by  
 

 is the weighting function incorporates all specification 
parameters, namely, , ,  and , into the design process 
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For example, in lowpass filter design,  has the form of: 
 

                     (10.38) 

 
When , there is a larger weighting at the stopband. On 
the other hand,  implies a larger weighting at the 
passband 
 
To solve for the minmax problem of (10.36), we can make 
use of the Parks-McClellan algorithm which requires 
iterations. The corresponding MATLAB command is firpm 
where the filter length parameter  is also required.  
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We can employ 
 

                          (10.39) 

 
to get its initial estimate and then compute . If the 
tolerance specifications are not met, we increment  until 
the maximum deviations are bounded by  and . 
 
Example 10.16 
Use the optimal equiripple method to design a linear-phase 
and causal FIR filter which approximates an ideal lowpass 
filter whose passband frequency is  and stopband 
frequency is . The maximum allowable tolerance is 

 in both passband and stopband. 
 



H. C. So                                                                        Page 101                                          

According to (10.39), an initial value of  is computed as: 
 

 

 
Starting with  in the Parks-McClellan algorithm, we 
increment its value until  so that the tolerance 
specifications are met.  
 
The MATLAB program is provided as ex10_16.m. 
 
In summary: 

 dB or  
 

,  
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Fig.10.41: Impulse response of optimal equiripple lowpass filter 
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Fig.10.42: Magnitude response of optimal equiripple lowpass filter 
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Fig.10.43: Amplitude response of optimal equiripple lowpass filter 



H. C. So                                                                        Page 105                                          

0 0.475

0.9952

1.0048

N=96

ω/π

0.525 1

-0.0048

0.0048

ω/π
 

Fig.10.44: Zoomed amplitude responses of optimal equiripple lowpass filter 
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Chapter 11: IIR Filter Design 
 

Chapter Intended Learning Outcomes: 
 
(i) Ability to design analog Butterworth filters 

 
(ii) Ability to design lowpass IIR filters according to 
predefined specifications based on analog filter theory and 
analog-to-digital filter transformation 
 
(iii) Ability to construct frequency-selective IIR filters based 
on a lowpass IIR filter 
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Steps in Infinite Impulse Response Filter Design 
The system transfer function of an IIR filter is: 
 

                        (11.1) 

 
The task in IIR filter design is to find  and  such that 

 satisfies the given specifications.  
 
Once  is computed, the filter can then be realized in 
hardware or software according to a direct, canonic, 
cascade or parallel form 
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We make use of the analog filter design to produce the 
required  
 

analog lowpass 
filter design

analog-to-digital
filter 

transformation

frequency band 
transformationfilter

specifications

Fig.11.1: Steps in determining transfer function of IIR filter 
 
Note that  is the Laplace transform parameter and 
substituting  in  yields the Fourier transform of 
the filter, that is,  
 
Main drawback is that there is no control over the phase 
response of , implying that the filter requirements can 
only be specified in terms of magnitude response  
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Butterworth Lowpass Filter Design 
 
In analog lowpass filter design, we can only specify the 
magnitude of . Typically, we employ the magnitude 
square response, that is, :  

passband transition stopband

 
Fig.11.2: Specifications of analog lowpass filter 
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Passband corresponds to  where  is the passband 
frequency and   is called the passband ripple 
 
Stopband corresponds to  where  is the 
stopband frequency and  is called the stopband 
attenuation 
 
Transition band corresponds to  
 
The specifications are represented as the two inequalities: 
 
               (11.2) 

and 
                    (11.3) 
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In particular, at  and , we have: 
 
                             (11.4) 

and 
                               (11.5) 

 
Apart from  and , it is also common to use their 
respective dB versions, denoted by  and : 
 
           (11.6) 

and 
              (11.7) 
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The magnitude square response of a th-order Butterworth 
lowpass filter is: 
 
                           (11.8) 

 
The filter is characterized by  and , which represent the 
cutoff frequency and filter order 
 
  at  and  at   for all  
 

  is a monotonically decreasing function of 
frequency which indicates that there is no ripple  

 

 filter shape is closer to the ideal response as  increases, 
although the filter with order of  is not realizable. 
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Fig.11.3: Magnitude square responses of Butterworth lowpass filter 
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To determine , we first make use of its relationship with 
: 

 
                           (11.9) 
 
From (11.8)-(11.9), we obtain: 
 

       (11.10) 

 
The  poles of , denoted by , , 
are given as: 
 
                (11.11) 
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-plane-plane-plane-plane-plane-plane

 
Fig.11.4: Poles of Butterworth lowpass filter 
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  are uniformly distributed on a circle of radius  with 
angular spacing of  in the -plane 

 
 poles are symmetrically located with respect to the 

imaginary axis 
 
 there are two real-valued poles when  is odd 
 
To extract  from (11.10), we utilize the knowledge that 
all poles of a stable and causal analog filter should be on 
the left half of the -plane. As a result,  is: 
 
                           (11.12) 
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Example 11.1 
The magnitude square response of a Butterworth lowpass 
filter has the form of: 
 

 

 
Determine the filter transfer function . 
 
Expressing  as: 
 

 

 
From (11.8),  and   
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From (11.11): 
 

 
 
Finally, we apply (11.12) to obtain: 
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To find  and  given the passband and stopband 
requirements in terms of , ,  and , we exploit 
(11.4)-(11.5) together with (11.6)-(11.7) to obtain 
 

                   (11.13) 

and 

                   (11.14) 
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Solving (11.13)-(11.14) and noting that  should be an 
integer, we get  
 

         (11.15) 

 
where  rounds up  to the nearest integer.  
 
The  is then obtained from (11.13) or (11.14) so that the 
specification can be exactly met at  or , respectively 
 
From (11.13),  is computed as: 
 
                    (11.16) 
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From (11.14),  is computed as: 
 
                          (11.17) 

 
As a result, the admissible range of  is: 
 

           (11.18) 

 
Example 11.2 
Determine the transfer function of a Butterworth lowpass 
filter whose magnitude requirements are  , 

 ,  dB and  dB. 
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Employing (11.15) yields: 
 

 

 

Putting  in (11.18), the cutoff frequency is: 
 

 

 
For simplicity, we select . Using Example 11.1, the 
filter transfer function  is: 
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Fig.11.5: Magnitude square response of Butterworth lowpass filter 
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The MATLAB program is provided as ex11_2.m where the 
command freqs, which is analogous to freqz, is used to 
plot  
 
Analog-to-Digital Filter Transformation 
 

Typical methods include impulse invariance, bilinear 
transformation, backward difference approximation and 
matched-  transformation 
 
Their common feature is that a stable analog filter will 
transform to a stable system with transfer function .  
 
Left half of -plane maps into inside of unit circle in -plane 
 
Each has its pros and cons and thus optimal transformation 
does not exist 
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 Impulse Invariance 
 
The idea is simply to sample impulse response of the analog 
filter  to obtain the digital lowpass filter impulse 
response   
 
The relationship between  and  is 
 

              (11.19) 
 
where  is the sampling interval  
 
Why there is a scaling of T ? 
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With the use of (4.5) and (5.3)-(5.4),  is: 
 

         (11.20) 

 
where the analog and digital frequencies are related as: 
 

                                      (11.21) 
 
The impulse response of the resultant IIR filter is similar to 
that of the analog filter 
 
Aliasing due to the overlapping of  which 
are not bandlimited. However,  corresponds to a 
lowpass filter and thus aliasing effect is negligibly small. 
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To derive the IIR filter transfer function  from , 
we first obtain the partial fraction expansion: 
 

                               (11.22) 

 
where  are the poles on the left half of the -plane 
 
The inverse Laplace transform of (11.22) is given as: 
 

                         (11.23) 
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Substituting (11.23) into (11.19), we have: 
 

                      (11.24) 

 
The  transform of  is: 
 

                        (11.25) 

 
Comparing (11.22) and (11.25), it is seen that a pole of 

 in the -plane transforms to a pole at  in the -
plane: 
 

                                (11.26) 
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Expressing : 
 

                  (11.27) 
 
where  is any integer, indicating a many-to-one mapping 
 
Each infinite horizontal strip of width  maps into the 
entire -plane 
 

 maps to , that is,  axis in the -plane 
transforms to the unit circle in the -plane 
 

 maps to , stable  produces stable  
 

 maps to , right half of the -plane maps into the 
outside of the unit circle in the -plane  
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Fig.11.6: Mapping between  and  in impulse invariance method 
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Given the magnitude square response specifications of 
 in terms of , ,  and , the design procedure 

for  based on the impulse invariance method is 
summarized as the following steps: 
 
(i) Select a value for the sampling interval  and then 

compute the passband and stopband frequencies for the 
analog lowpass filter according to  and  

 
(ii) Design the analog Butterworth filter with transfer 

function  according to , ,  and  
 
(iii)Perform partial fraction expansion on  as in (11.22) 
 
(iv)Obtain  using (11.25) 
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Example 11.3 
The transfer function of an analog filter has the form of 
 

 

 
Use impulse invariance method with sampling interval  
to transform  to a digital filter transfer function . 
 
Performing partial fraction expansion on : 
 

 
 

Applying (11.25) with  yields 
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Example 11.4 
Determine the transfer function  of a digital lowpass 
filter whose magnitude requirements are , , 

 dB and  dB. Use the Butterworth lowpass filter 
and impulse invariance method in the design. 
 
Selecting the sampling interval as , the analog 
frequency parameters are computed as: 
 

 

and 
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Using Example 11.2, a Butterworth filter which meets the 
magnitude requirements are: 
 

 

 
Performing partial fraction expansion on  with the use 
of the MATLAB command residue, we get 
 

 

 
Applying (11.25) with  yields 
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The MATLAB program is provided as ex11_4.m. 
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Fig.11.7: Magnitude and phase responses based on impulse invariance 
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 Bilinear Transformation 
 
It is a conformal mapping that maps the  axis of the -
plane into the unit circle of the -plane only once, implying 
there is no aliasing problem as in the impulse invariance 
method 
 
It is a one-to-one mapping 
 
The relationship between  and  is: 
 

                   (11.28) 
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Employing ,  can be expressed as: 
 
                              (11.29) 

 
 maps to , that is,  axis in the -plane 

transforms to the unit circle in the -plane 
 

 maps to , stable  produces a stable  
 

 maps to , right half of the -plane maps into the 
outside of the unit circle in the -plane  
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Fig.11.8: Mapping between  and  in bilinear transformation 
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Although aliasing is avoided, the drawback of the bilinear 
transformation is that there is no linear relationship 
between  and  
 
Putting  and  in (11.28),  and  are related as: 
 

        (11.30) 

 
Given the magnitude square response specifications of 

 in terms of , ,  and , the design procedure 
for  based on the bilinear transformation is 
summarized as the following steps: 
 



H. C. So                                                                        Page 36                                  
 

(i) Select a value for  and then compute the passband and 
stopband frequencies for the analog lowpass filter 
according  and  

 
(ii) Design the analog Butterworth filter with transfer 

function  according to , ,  and . 
 
(iii)Obtain  from  using the substitution of (11.28). 
 
Example 11.5 
The transfer function of an analog filter has the form of 
 

 
 

Use the bilinear transformation with  to transform  
to a digital filter with transfer function . 
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Applying (11.28) with  yields 
 

 

 
Example 11.6 
Determine the transfer function  of a digital lowpass 
filter whose magnitude requirements are , , 

 dB and  dB. Use the Butterworth lowpass filter 
and bilinear transformation in the design. 
 
Selecting , the analog frequency parameters are 
computed according to (11.30) as: 
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and 
 

 
Employing (11.15) yields: 
 

 

 
Putting  in (11.18), the cutoff frequency is: 
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For simplicity,  is employed.  
 
Following (11.11)-(11.12): 
 

 

 
Finally, we use (11.28) with  to yield 
 

 

 
The MATLAB program is provided as ex11_6.m. 
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Fig.11.9: Magnitude and phase responses based on bilinear transformation 
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Frequency Band Transformation 
 
The operations are similar to that of the bilinear 
transformation but now the mapping is performed only in 
the -plane: 
 
                                   (11.31) 
 
where  and  correspond to the lowpass and resultant 
filters, respectively, and  denotes the transformation 
operator.  
 
To ensure the transformed filter to be stable and causal, the 
unit circle and inside of the -plane should map into those 
of the -plane, respectively.  
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Filter 
Type 

Transformation Operator Design Parameter 

Lowpass  
  

Highpass  

  

Bandpass  
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Bandstop  

 
 

 

Table 11.1: Frequency band transformation operators 
 
Example 11.7 
Determine the transfer function  of a digital highpass 
filter whose magnitude requirements are , , 

 dB and  dB. Use the Butterworth lowpass filter 
and bilinear transformation in the design. 
 
Using Example 11.6, the corresponding lowpass filter 
transfer function  is: 
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Assigning the cutoff frequencies as the midpoints between 
the passband and stopband frequencies, we have 
 

 

 
With the use of Table 11.1, the corresponding value of  is: 
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which gives the transformation operator: 
 

 

 
As a result, the digital highpass filter transfer function is: 
 

 

 
The MATLAB program is provided as ex11_7.m. 
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Fig.11.10: Magnitude and phase responses based on frequency band transformation 
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Chapter 12: Tools and Applications 
 
Chapter Intended Learning Outcomes: 
 
(i) Understanding the basic concepts of signal modeling, 
correlation, maximum likelihood estimation, least squares 
and iterative numerical methods 
 
(ii) Ability to solve simple signal processing problems with 
the use of investigated tools 
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Tools 
 
 Signal Modeling 
 
1. White Noise 
 
A random sequence  is white if 
 

                    (12.1) 
and 

            (12.2) 

 
where  denotes the expectation operator and  is the 
power or variance of  
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The mean value of  is zero for all  
 
There is no correlation between  and  if  
 
The probability density function (PDF) is not specified, which 
means that  can be a uniform or Gaussian sequence 
 
The MATLAB command to generate a white uniform number 
with  is rand-0.5 and that of a white Gaussian 
random variable with  is randn  
 

 is a wideband signal and has a flat spectrum in the 
mean sense 
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2. Sinusoidal Model 
  
Many real-world signals in the areas such as radar, sonar 
and communications, can be well described as: 
 

              (12.3) 

 
where ,  and  denote the amplitude, 
frequency and phase of the -th sinusoid, respectively 
 
3. Autoregressive Model 
  
Autoregressive (AR) process has been used to represent 
many real-world signals such as speech and 
electroencephalography (EEG) 
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A -th order AR process is: 
 

                (12.4) 

 
where  are the AR parameters and  is an additive 
white noise 
 
Taking the  transform on (12.4), we see that the transfer 
function  of the system with input  and output  is: 
 

             (12.5) 
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4. Moving Average Model 
  
A moving average (MA) process of order  is: 
 

       (12.6) 

 
where  is an additive white noise and  are called the 
MA parameters  
 
Taking the  transform on (12.6), we see that the transfer 
function  of the system with input  and output  is: 
 

                 (12.7) 
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and its finite-duration impulse response  is 
 

                  (12.8) 

 
5. Autoregressive Moving Average Model 
  
The autoregressive moving average (ARMA) process 
generalizes the AR and MA models: 
 

     (12.9) 

 
where  and  are the ARMA parameters and  is an 
additive white noise 
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The system transfer function is: 
 

          (12.10) 

 Correlation 
 
It provides a simple and useful measure for determining the 
similarity between two sequences 
 

Autocorrelation measures the similarity of the same signal 
 at different time indices and it is defined as: 

 
                         (12.11) 
 

where  is called the lag 
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If  is large,  is similar to  while they are not 
similar for a small  
 
Two important properties for  are: 
 

                       (12.12) 
and 

                                    (12.13) 
 
When ergodicity holds, that is, the mean value is equal to 
the time average,  is also expressed as: 
 

        (12.14) 
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An estimate of  using a finite-length  for 
, denoted by , is: 

 

    (12.15) 

 
Cross-correlation is used for two different sequences  
and : 

  (12.16) 

and 

            (12.17) 

 
with ,  
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Example 12.1 
Use the MATLAB command randn to generate a zero-mean 
Gaussian sequence with length 10000 and power . 
Verify its whiteness. 
 
We first use q=randn(1,10000) to generate the sequence 
and then use the MATLAB command xcorr(q) to compute 

 
 
The MATLAB program is provided as ex12_1.m. 
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Fig. 12.1: Autocorrelation of white Gaussian sequence 
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 Maximum Likelihood Estimation 
 
Suppose there is an observed sequence  which contains 
a deterministic signal in the presence of noise: 
 

            (12.18) 
 
where  is the known function of the parameter vector  
and  is the noise 
 
The task is to find  from  
 
The maximum likelihood approach aims to provide optimum 
estimation for  when the PDF of  is available 
 
Assume  is zero-mean Gaussian variable with variance  
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Zero-mean implies that the mean value of  is: 
 

              (12.19) 
 
The PDF of each scalar  parameterized by  is: 
 

          (12.20) 

 
Defining    
and , we extend (12.20) 
to : 
 

    (12.21) 
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where  is called the covariance matrix: 
 

              (12.22) 
 
The maximum likelihood estimate for  is 
 

                     (12.23) 

 
For white , according to (12.1)-(12.2),  is simply 
determined as: 
 

                               (12.24) 
 
where  is the identity matrix, resulting in  and 
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As a result, the PDF of  is simplified as: 
 

                  (12.25) 

 
Maximizing  is equal to minimizing , 
the maximum likelihood estimate is also equal to: 
 

                 (12.26) 

 
 Least Squares 
 
Compared with the maximum likelihood approach, it does 
not require the PDF information but its estimation 
performance may be inferior 
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The least squares estimate for  is: 
 

        (12.27) 

 
That is, the maximum likelihood and least squares 
estimates are equivalent for white noise 
 
Note that when  is a linear function of , then  can 
be simplified to a global closed-form solution  
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Example 12.2 
Given  samples of  which has the form of: 
 

 
 
where  and  are the parameters of interest and  is an 
unknown zero-mean noise sequence. Determine the least 
squares estimates for  and . This problem is also known 
as linear regression in statistics. 
 
According to (12.27), the least squares cost function is: 
 

 

 
which is quadratic with parameters  and .  
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To find the least squares estimates, we differentiate  
with respect to  and , and then set the resultant 
expressions to zero: 
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Hence: 
 

 

 
which corresponds to a closed-form global solution.  
 
The MATLAB program is provided as ex12_2.m 
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Fig.12.2: Linear regression with ,  and  
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 Iterative Numerical Methods 
 
When the parameters of interest are not linear in the 
observed data, the corresponding cost functions based on 
the maximum likelihood and least squares methods contain 
local minima and maxima 
 
If we have an initial estimate  sufficiently close to the 
global optimum,  can be obtained using iterative schemes: 
 
Assuming minimization of , Netwon-Raphson method is 
 

               (12.28) 
 
where  is the Hessian matrix and  is the 
gradient vector, computed at the -th iteration estimate . 
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Steepest descent method is 
 

                            (12.29) 
 
where  is a positive constant which controls the 
convergence rate and stability of the algorithm  
 
Typical choices of stopping criteria include number of 
iterations and  where  is a sufficiently small 
positive constant 
 
The Newton-Raphson algorithm provides fast convergence 
but matrix inverse is required 
 
The steepest descent method is stable but its convergence 
rate is slow 
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Applications 
 
 Signal Generation with Non-Integer Sample Delay 
 
Given a discrete-time sequence , we can generate 

 where  is not an integer, according to the time 
shifting property of discrete-time Fourier transform (DTFT) 
as follows.  The DTFT transform pair for  is: 
 

                            (12.30) 
 
The ideal frequency response for a non-integer sample 
delay is: 
 

                            (12.31) 
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Applying the inverse DTFT, the ideal impulse response is: 
 

(12.32) 

 
In theory,  is computed as: 
 

        (12.33) 

 
which aligns with Example 4.3.  
 
We utilize time-shifting and truncation to obtain a practical 
solution: 
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                  (12.34) 

 
which corresponds to a causal system because only 

, are required at time  
 
The value of  should be chosen sufficiently large to reduce 
the truncation error 
 
The relationship between  and  is: 
 

                          (12.35) 
 
That is, the desired time-shifted signal is obtained after a 
delay of  samples 
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Example 12.3 
Design a causal finite impulse response (FIR) system with 
10 coefficients to approximate a time-shifter whose input is 

 and output is  where . 
 
From (12.32), the ideal impulse response is: 
 

 
 

Investigating  for , we have 

  with  . The 
coefficients , are chosen because they 
have the largest energy. Similar to (12.34),  is: 
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Fig.12.3: Square wave sequence 
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Fig.12.4: Time-shifted square wave sequence 
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The MATLAB program is provided as ex12_3.m 
 
 Moving Average for Security Analysis 
 
MA is one of the standard technical indicators for security 
analysis, which aims to identify the trend direction or define 
potential support and resistance levels. Basically, it is the 
average price of a security over a specified time period. The 
MA signal  for  in security analysis is: 
 

               (12.36) 

 

(12.36) can be viewed as  where  is: 
 

                       (12.37) 
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Example 12.4 
Plot the 20-day MA for the Dow Jones Industrial Average 
(DJIA), which is a well-known stock market index, at the 
year of 2009. 
 
According to (12.36),  and  corresponds to the 
close prices of the DJIA. Note that apart from the 252 
trading days of 2009, we also need the last 19 close prices 
of 2008 for computation.  
 
The MA curve is a smoothed and delayed version 
 
The smoothing is resulted from the lowpass filtering process 
where the high frequency components in  are removed.  
 
There is a delay because 19 previous samples are employed  
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Fig.12.5: 20-day MA for Dow Jones Industrial Average at 2009 
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The MATLAB program is provided as ex12_4.m 
 
 Frequency Shift-Keying Signal Detection 
 
Frequency-shift keying (FSK) is a simple frequency 
modulation scheme in digital communications 
 
The basic idea is to use  distinct frequencies, say,  

, to represent a -bit symbol for data 
transmission  
 
The transmitted FSK signal is modeled as: 
 
     (12.38) 
 
where  for  
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Based on (12.16), it can be shown that  for all  
when , while , , according to (12.12) 
 
Suppose a noisy FSK signal  with unknown frequency is 
received 
 
With the use of (12.15) and (12.17), the frequency index 
can be estimated as: 
 

                            (12.39)  

 
Consider  such that  and  represent bits “0” and “1”, 
respectively, bit “0” is detected if 

. Otherwise, bit “1” is detected 
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 Spectral Analysis using Discrete Time Fourier Transform 
 
As DTFT  shows the frequency components of its time-
domain representation , we can find the signal frequency 
information by investigating the magnitude response . 
 
Example 12.5 
Determine the fundamental frequency of the speech 
segment in Fig.1.1 
 
The sampling frequency is 22000 Hz. We use the MATLAB 
command freqz to plot the frequency magnitude response  
 
There are three peaks at 245 Hz, 493 Hz and 740 Hz. As 
voiced speech is periodic, and  and , 
we deduce that the speech fundamental frequency is 245 Hz 
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Fig.12.6: Magnitude plots for speech segment 
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The MATLAB program is provided as ex12_5.m 
 
 Noise Reduction using Discrete Fourier Transform 
 
Suppose we are given a noisy signal : 
 

         (12.40) 
 
where  is the signal of interest and  is the additive 
noise 
 
The task is to extract  from  
 
Suppose  is a narrowband signal while  is a wideband 
sequence, discrete Fourier transform (DFT) may be utilized 
to retrieve  
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First, we compute  from . An estimate of , denoted 
by , is then obtained as: 
 

              (12.41) 

 
where , . Finally, the estimate of 

 is given by the inverse DFT of  
 
Example 12.6 
Given  samples of a noisy signal  of the form: 
 

 
 
where  is a real sinusoid and  is a white noise with 
variance . Estimate  from . 
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A MATLAB simulation study with ,  
and , is performed  
 
The two peaks and the remaining coefficients roughly 
correspond to the narrowband  and wideband , 
respectively 
 
As a result, we only keep the two peaks as  and the 
estimate of   
 
The MATLAB program is provided as ex12_6.m 
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Fig.12.7: Plots for noisy sequence 
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Fig.12.8: Plots for recovered signal 
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 Estimation of Constant in Noise 
 
When , (12.18) becomes 
 

            (12.42) 
 
Assume the noise  is a white Gaussian process with 
variance ,  
 
The noise covariance matrix is now equal to 

 which is a diagonal matrix of  
 
The maximum likelihood estimate of  is 
 

                       (12.43) 
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where 

           (12.44) 

 
Differentiating  with respect to  and then setting the 
resultant expression to zero, we get: 
 

  (12.45) 

 
where each  is weighted by . That is, a smaller 
weight is used for  with a larger noise and vice versa 
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The least squares solution is obtained by substituting : 
 

                         (12.46) 

 
which is simply the average value of  
 
In terms of estimation performance, (12.45) is more 
accurate than (12.46) but the latter has the advantage that 
prior knowledge of the noise powers is not required 
 
 Time Delay Estimation 
 
The problem is to find the time-shift between two versions 
of the same signal 
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Radar ranging is a representative application 
 
From Fig.1.3 and let the transmitted and received signals be 

 and , respectively, the time delay estimation problem 
is to find  with the use of  and  
 
The received signal  is: 
 

          (12.47) 
 
where  is the attenuation parameter,  is the round-trip 
propagation time, and  is a zero-mean noise.  
 
For simplicity, here we assume that  is an integer  
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We can use correlation to estimate : 
 

                            (12.48) 

 
Or using least squares approach where the cost function is: 
 

                    (12.49) 

 
which contains two variables 
 
Differentiate  with respect to  and set the resultant 
expression to zero to find the least squares estimate of  in 
terms of , and then substitute it back to (12.49) 
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The least squares solution of  can also be written as 
 

           (12.50) 

 
 Sinusoidal Parameter Estimation 
 
The problem is to find the amplitudes, frequencies and 
phases of tones embedded in noise 
 
The simplest model corresponds to  in (12.3): 
 
             (12.51) 
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Assume  is white Gaussian with variance  
 
The maximum likelihood estimate is equal to the least 
squares solution: 
 

      (12.52) 

where 

         (12.53) 

 
which corresponds to a multimodal function 
 
With an initial estimate  sufficiently close to the global 
minimum of (12.53), the steepest descent algorithm for 
finding  is: 
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(12.54) 
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