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Applications
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Robust PCA Problem
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Data Model

The problem is defined to

oLearn the column-space/row-space of 𝐋

oDecomposing matrix 𝐃

𝐃 = 𝐋 + 𝐂

Low Rank Matrix Data Corruption 



Data Corruption Models
Matrix C

Element-wise corruption model
Matrix 𝐂 is a sparse matrix with arbitrary support.

All the columns/rows might be affected.

Known as low rank plus sparse matrix decomposition
problem.

Column-wise corruption model
A subset of the columns of 𝐂 are non-zero columns.

These non-zero columns do not lie in the

Column space of 𝐋.

Known as subspace recovery or outlier detection 
problem.
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Inlier-Outlier Structure



Algorithms

Element-wise model
oPrincipal Component Pursuit
[Chandrasekaran et al. 2011]

oAlternating minimization
[Ke et al. 2005]

Column-wise model 
Algorithms based on column-sparsity [Xu et al. 2010, Ding et al. 2006]

Algorithms based on outliers linear independence [Soltanolkotabi et al, 
2012]

Algorithm based on low coherency of outliers [Rahmani et. Al, 2016]
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Complexity of Robus PCA

Computation complexity

Memory requirement

≥ O(r N1N2T)

O(N1N2)

𝐃 ∈ ℝN1×N2

Can we solve the problem with few random linear measurements?



Randomized approach

𝐃 =
𝐋 + 𝐂

𝐃𝐬 ∈
ℝN1×𝑚

𝐃𝐫 ∈ ℝ𝑛×𝑁2

Column-space learning Row-space learning

Low Rank 

Matrix 

Recovery

𝐃𝐬 ∈
ℝN1×𝑚

Element wise model
(Matrix Decomposition)

[Mackey et al. 2011, Rahmani et al. 2015]

𝐃𝐬
𝝓
∈

ℝn×𝑚

Matrix Embedding 

𝐃𝐬
′

Outlier Removal

Column wise model
(Subspace Recovery)

Basis for the 

column space

m: Number of randomly sampled columns

n: Number of randomly sampled rows

[Li et al., 2014]

𝐃 =
𝐋 + 𝐂

𝐃 =
𝐋 + 𝐂



Existing Results 

Elements-wise model (matrix decomposition)
Sample complexity 𝐎(𝐫𝛍𝐦𝐚𝐱 𝐍𝟏, 𝐍𝟐 ) [Rahmani et al., 2015]

Computation complexity 𝐎(𝒓𝟐𝛍𝒎𝒂𝒙 𝑵𝟏, 𝑵𝟐 𝑻)

Column-wise model (Subspace recovery)
Sample complexity 𝐎(𝒓𝐍𝟐) [Li et al., 2015],  𝐎(𝒓𝟐𝛍) [Rahmani et al., 

2015]

Computation complexity 𝐎 𝑵𝟏𝒓
𝟐𝝁 + 𝒓𝟑𝝁
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Motivation
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In the column-wise outlier model, can we make the computation 

complexity of subspace recovery independent from the size of data?



Proposed Randomized Design
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𝐃 =
𝐋 + 𝐂𝐃𝐬 ∈

ℝN1×𝑚

𝐃𝐬
𝝓
∈

ℝn×𝑚

Row Sampling

𝐃𝐬
′

Outlier Removal

Column-wise model
(Subspace Recovery)

Basis for the 

column space

𝐃 =
𝐋 + 𝐂

Column Sampling

Complexity can be 

independent from size data



Outlier Removal

Outlier column sparsity

Outlier linear independence
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Checking if a column is linearly dependent on other columns

or has sparse representation w.r.t them 



Performance Guarantee
Data Model
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Data Model: The given data matrix 𝐃 ∈ ℝ𝑵𝟏×𝑵𝟐 satisfies the following conditions

1. 𝐃 = 𝐋 + 𝐂 and the columns of 𝐃 are normalized.

2. Rank 𝐋 = r .

3. Matrix 𝐂 has K non columns. The non-zero columns of 𝐂 are i.i.d. random vectors uniformly

distributed on the unit sphere.
𝐾

𝑁2
=

# outliers

# Columns



Performance Guarantee
Sufficient Conditions, Outlier detection: Column sparsity
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Theorem 1: If the given data follows the data model, the columns/rows are sampled randomly, and

then the proposed method recovers the exact subspace with probability at least 1 − 4𝛿. 



Performance Guarantee

Sufficient conditions, Outlier detection: Outlier linear independence 
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Theorem 2: If data follows the data model, the columns/rows are sampled randomly, and

then the proposed method recovers the exact subspace with probability at least 1 − 6𝛿. 



Proposed Randomized Design
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𝐃
𝐃𝐬 ∈
ℝN1×𝑚

𝐃𝐬
𝝓
∈

ℝn×𝑚

Row Sampling

𝐃𝐬
′

Outlier Removal

Column-wise model
(Subspace Recovery)

Basis for the 

column space

𝐃

Column Sampling



New Result

The computation and sample complexity for exact subspace 

recovery is almost independent from the size of data.

Sample complexity

Column sparsity:O r2μumax μv, rμv
2K/N2

Linear independence: O(r2μvmax μu, rμvK/N2 )

Computation complexity:

Column sparse: O(rmnT)

Linear independence: O rm2n
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Both 𝑚 and 𝑛 were shown to 

be independent from data size.



Numerical Experiment-Phase transition 
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𝐃 ∈ ℝ2000×4000

with different values for the rank of 𝐋



Numerical Experiment-Phase transition 
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with different data dimensions



Numerical Experiment-Phase transition 
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with different 𝜌 =
𝐾

𝑁2

𝐃 ∈ ℝ2000×4000



Phase Transition with Real Data
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𝐃 ∈ ℝ62×512

r ≈ 3



Row Sampling vs Random Embedding
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Preserving the low rank component Preserving the low rank component

The component of outliers

which does not lie in the span of inliers



Thank you.

Questions?!
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New Result

The computation and sample complexity for exact subspace 

recovery is almost independent from the size of data.

Sample complexity

Column sparse:O r2μumax μv, rμv
2K/N2

Linear independence: O(r2μvmax μu, rμvK/N2 )
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Both 𝑚 and 𝑛 were shown to 

be independent from data size.


