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Robust PCA Problem

»Data Model

Low Rank Matrix Data Corruption

»The problem is defined to

o Learn the column-space/row-space of L
o Decomposing matrix D



Data Corruption Models

» Element-wise corruption model

Matrix C

»Matrix C is a sparse matrix with arbitrary support.
» All the columns/rows might be affected.

»Known as low rank plus sparse matrix decomposition

problem.

» Column-wise corruption model
» A subset of the columns of C are

non-zero columns.

» These non-zero columns do not lie in the

Column space of L.

»Known as subspace recovery or outlier detection

problem.
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Algorithms

> Element-wise model min LI« + AlICll1
. . L.C
o Principal Component Pursuit
[Chandrasekaran et al. 2011] subject to L+ C = D.

o Alternating minimization
[Ke et al. 2005]

» Column-wise model
» Algorithms based on column-sparsity [Xu et al. 2010, Ding et al. 2006]

» Algorithms based on outliers linear independence [Soltanolkotabi et al,
2012]

» Algorithm based on low coherency of outliers [Rahmani et. Al, 2016]



Complexity of Robus PCA

D E IRN1XN2
» Computation complexity
> O(r N{N,T)

»Memory requirement
O(N;N3)

Can we solve the problem with few random linear measurements?



Randomized approach

Element wise model

(Matrix Decomposition)
[Mackey et al. 2011, Rahmani et al. 2015]

Column-space learning Row-space learning

Low Rank
Matrix
Recovery

Column wise model
(Subspace Recovery)
[Li etal., 2014]

Matrix Embedding Outlier Removal

m: Number of randomly sampled columns
n: Number of randomly sampled rows

Basis for the
column space



Existing Results

» Elements-wise model (matrix decomposition)
»Sample complexity O(rpumax(N4,N,)) [Rahmani et al., 2015]
»Computation complexity O(r*pmax(N, N,)T)

» Column-wise model (Subspace recovery)

»>Sample complexity O(rN,) [Li et al., 2015], O(r*p) [Rahmani et al.,
2015]

»Computation complexity O(Nr2u + r3p)



Motivation

In the column-wise outlier model, can we make the computation
complexity of subspace recovery independent from the size of data?



Proposed Randomized Design

Column-wise model

(Subspace Recovery) Qutlier Removal

Column Sampling Row Sampling
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Complexity can be
independent from size data
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Outlier Removal

» Outlier column sparsity

min L]l + MICll1.2
L.C

subject to L+C=D

» Qutlier linear independence

Checking if a column is linearly dependent on other columns
or has sparse representation w.r.t them




Performance Guarantee
Data Model

Data Model: The given data matrix D € RV1*N2 gatisfies the following conditions
1.D =L+ C and the columns of D are normalized.
2. Rank(L) =r.

3. Matrix C has K non columns. The non-zero columns of C are i.i.d. random vectors uniformly
K # outliers

distributed on the unit sphere. — =
N, # Columns




Performance Guarantee
Sufficient Conditions,

Theorem 1: If the given data follows the data model, the columns/rows are sampled randomly, ant

K _ N2 /2N,
Ny = 1+ 6rp,(121/9)

K 5 2 2
m > max (12 N (l—l—ﬁ?‘;LU(IQI/Q))ElUg 5 107 1, log %)
V2

3 -
n > max {r,uu max (r:l log r, ¢o log (3)) , T+ 1+ 2log2K/ + \/8 log 2K /4§

then the proposed method recovers the exact subspace with probability at least 1 — 44.

]




Performance Guarantee

Sufficient conditions,

Theorem 2: If data follows the data model, the columns/rows are sampled randomly, and

4r
mi 2 C[_L-,UT‘ log F

3
Mo > max |7, max (cl log r, c2 log (5))  r 4+ q+ 210g§ + \/8 qlog%{

then the proposed method recovers the exact subspace with probability at least 1 — 64.




Proposed Randomized Design

Column-wise model

(Subspace Recovery) Qutlier Removal

Column Sampling Row Sampling
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New Result

» The computation and sample complexity for exact subspace
recovery is almost independent from the size of data.

» Sample complexity
» Column sparsity:0(r?p, max(u,, ruzK/N,))
> Linear independence: O(r?u, max(p,, ru,K/N>,))

» Computation complexity:

» Column sparse: O(rmnT) Both m and n were shown to
be independent from data size.

> Linear independence: O(rm?®n)
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Numerical Experiment-Phase transition
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Numerical Experiment-Phase transition
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Numerical Experiment-Phase transition
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Phase Transition with Real Data

D € R62%x512

r~3




Row Sampling vs Random Embedding
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Thank you.

Questions?!



New Result

» The computation and sample complexity for exact subspace
recovery is almost independent from the size of data.

» Sample complexity
> Column sparse:0(r?p, max(p, rp2K/N,))

> Linear independence: O(r?u, max(p,, ru,K/N>,))

» Computation complexity:

» Column sparse: O(rmnT) Both m and n were shown to
be independent from data size.

> Linear independence: O(rm?®n)

24



