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Contribution: utilizing both label and side information
As for the semi-supervised learning, both label and side information serve as pretty significant indicators for
the classification. However, majority of the associated works only focus on one side of the road. To tackle
this issue, SC method is proposed with taking both of them into consideration simultaneously.

Parameter-free similarity
To achieve sparse parameter-free similarity, we in-
troduce the following optimization w.r.t. ai as

min
aTi 1=1,0≤ai≤1

Tr(X(D −A)XT ) +
n∑

i,j=1

(
γi
2
a2ij) (1)

Accordingly, the Lagrangian function could be illus-
trated as

1

2
‖ai +

ei
2γi
‖22 − η(aTi 1− 1)− βTi ai (2)

We could achieve a sparse parameter-free
similarity aij = (− eij

2γi
+ η)+..

Semi-supervised learning
Generally speaking, the classification problem is to
minimize the intrinsic graph problem G with max-
imizing the penalty graph problem Gp simultane-
ously. Therefore, the classification problem can be
further represented as

min
Y

∑
i,j

awij‖yi − yj‖22 = min
Y

2Tr(Y TLwY )

max
Y

∑
i,j

abij‖yi − yj‖22 = max
Y

2Tr(Y TLbY )
(3)

In particular, the graph-based semi-supervised
learning (GSL) problem can be represented as

min
Fu

Tr([Yl;Fu]TLw[Yl;Fu])

Tr([Yl;Fu]TLb[Yl;Fu])

= min
Fu

Tr(

[
Yl
Fu

]T [
Lwll Lwlu
Lwul Lwuu

] [
Yl
Fu

]
)

Tr(

[
Yl
Fu

]T [
Lbll Lblu
Lbul Lbuu

] [
Yl
Fu

]
)

(4)

We could utilize the label information in Fu
and side information in Lw and Lb simultane-
ously.

Comparative results on toy datasets.
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Perfect classification results on toy datasets by
virtue of both label and side information. We
utilize two-spirals and three-rings synthetic databases
to compare the classification results. We could ob-
serve that the proposed SC method could achieve the

optimal classification results based on utilizing both
label and side information. Besides, we notice that
the SC method performs better than the LP method
and the LLGC method.

Comparative results on benchmark datasets
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Our algorithm performs much better via utiliz-
ing both label and side information. We choose
6 datasets as AR, AT&T, COIL20, FEI, FLOWER17

and IMM for the classification comparison with equal

labeled data shared by each class.
We could observe that the proposed SC method per-
forms much better than other approaches on the clas-
sification accuracy with minor exceptions.

Core algorithm

while p > 0 do

Update λ← λ1+λ2

2
Update Q← (A− λB)−1(λD − C)
Update p← Tr(QT (A− λB)Q) +
2Tr(QT (C − λD)) + (e− λf)
if p > 0 then

Replace λ1 ← λ

while not converge do
Update Q← (A− λB)−1(λD − C)

Update λ← Tr(QTAQ)+2Tr(QTC)+e
Tr(QTBQ)+2Tr(QTD)+f

return Q

where Q is the obtained soft label matrix.

The algorithm above can be proposed based
on introducing the associated characteristic
function p(λ). Additionally, theoretical anal-
ysis shows that the proposed algorithm mono-
tonically converges to the global optimal so-
lution of GSL problem (4).

Characteristic function
Apparently, the GSL problem (4) is equivalent to
the following quadratic trace ratio (QTR) problem

min
Q∈Rnu×c

Tr(QTAQ) + 2Tr(QTC) + e

Tr(QTBQ) + 2Tr(QTD) + f
(5)

where A = Lwuu, B = Lbuu, C = LwulYl, D =
LbulYl, e = Tr(Y Tl L

w
llYl) and f = Tr(Y Tl L

b
llYl) with

Tr([Yl;Q]TLb[Yl; Q]) > 0.
To solve the QTR problem (5), we introduce the
characteristic function p(λ) as

p(λ) = min
Q

(Tr(QTAQ) + 2Tr(QTC) + e)−

λ(Tr(QTBQ) + 2Tr(QTD) + f)
(6)

where λ ← Tr(QTAQ)+2Tr(QTC)+e
Tr(QTBQ)+2Tr(QTD)+f

is to be itera-

tively updated.


