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Problem statement Segmentation pipeline Experimental results

Left frame

(a) (b) (c)
(a), (b) Two fenced observations from a video cap-
tured by us using a smartphone. (c) De-fenced

image obtained by the proposed technique.
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Goal: To build an effecient algorithm for the de-
tection and removal of fences/occlusions from
images/videos. We solve the identified problem in
three phases:

Right frame

e Fxatrcted features from each one of the sub-
network are used to compute cosine similarity.

e Robust segmentation of fences/occlusions e Robustly obtain the fence pixels by feeding au-
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e Optical flow between the frames tomatically generated scribbles to mating. Léft i;age Rig‘in:lage Disparity mp S P e
e Information fusion using TV split Bregman : : : S— . Ir.lput , Mu et al. |3] , Proposed .
Information fusion using total variation split Bregman Comparison with the video de-fencing algorithm in

The de-fenced image is the solution of the following = We can now split the above problem into two sub-

The degradation model for the frames of the captured constrained optimization problem problems as
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cluded pixels have been excluded using O,,, y,,,

m = 1,2 are the left and right images comprising video and p is the regularization parameter. We . .
the sterco pair. O, is the fonce mask correspond. employ the split Bregman (SB) iterative framework Thﬁl S(lilb—problem is solved by a steepest descent
) : method.
ing to m'™ image, W,,, is the warp matrix, x is the 1 2] to solve t};e above problem. Sub Problem 2
de-fenced image and n,, is the Gaussian noise. .1
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Fence detection using stereo

A 2
+§ |d—Vx |3 The above sub-problem can be solved by applying

the shrinkage operator as follows

Given a pair of images y,, (m=1,2), we want
to compute the disparity map D.

where A is the shrinkage parameter. The Bregman Comparison with the state-of-the-art image
e We have exploited disparity/depth cue for the 1térates to solve the above epquatlon are as d*t! = shrink(Vx"t! + b~ é) de-fencing algorithm in |5].
fence pattern segmentation. I I .1 1 H
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e The authors in [1], trained two CNNs ‘fast’ and =1 gkt — Y% « maz(| VxF 4 bk | =2 0)
‘accurate’ on pairs of small image patches. ) EL H —I—é H d* — vxF L b¥ 12 | Vxkt+l 4 b | [ e Presented a novel algorithm for fence segmen-
FTo 2 . bt bt 1 . bt 1 tation and removal using a stereo-pair.
e We employed ‘fast’ pre-trained model given be- The update for b is as b = VX" +b" —d""".
low for matching cost computation in our work. bl = YxFtl L pk — gkt We tune the parameters u, A to obtain the best es- e We harnessed disparity cue for robust fence
timate of the de-fenced image. pixel identification.
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