Low Rank Phase Retrieval

Seyedehsara Nayer, Namrata Vaswani and Yonina C. Eldar
Iowa State University, Technion University

INTRODUCTION

Goal: recover a low-rank matrix, \boldsymbol{X}, from magnitude-only observations of random linear projections of its columns
Contributions:
(1) AltMinTrunc that exploits low-rank structure of \boldsymbol{X}
(2 high probability sample complexity bounds for AltMinTrunc initialization
Problem Definition

- Instead of a single vector \boldsymbol{x}, we have a set of q vectors, $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{q}$ which are such that the $n \times q$ matrix $\boldsymbol{X}:=\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{q}\right]$ has rank $r \ll \min (n, q)$ For each \boldsymbol{x}_{k}, there are a set of m measurements of the form
$\boldsymbol{y}_{i, k}:=\left(\boldsymbol{a}_{i, k}{ }^{\prime} \boldsymbol{x}_{k}\right)^{2}, i=1,2, \ldots m, k=1,2, \ldots, q$

EXPERIMENT RESULTS

$m=0.8 n \quad m=0.6 n$
$q=100 \quad q=1000$

COMPLETE ALGORITHM

- Initialization
- Compute $\hat{\boldsymbol{U}}$ as top r eigenvectors of
$\mathrm{Y}_{\mathrm{U}}:=\frac{1}{\mathrm{mq}} \sum_{\mathrm{i}} \sum_{\mathrm{k}} \mathrm{y}_{\mathrm{i}, \mathrm{k}} \mathrm{a}_{\mathrm{i}, \mathrm{k}} \mathrm{a}_{\mathrm{i}, \mathrm{k}} \mathbf{1}_{\left\{\mathrm{y}_{\mathrm{i}, \mathrm{k}} \leq 9\right.} \sum_{\sum_{\mathrm{i}} \mathrm{y}_{i, k}}$
For each $k=1,2, \ldots, \quad q, \quad\left\{\mathrm{y}_{\mathrm{i}, \mathrm{k}} \leq 9 \frac{1}{\mathrm{~m}}\right\}$
For each $k=1,2, \ldots, q$,
. Compute $\hat{\boldsymbol{v}}_{k}$ as the top eigenvector of $\mathbf{Y}_{\mathrm{b}, \mathrm{k}}:=\hat{\mathrm{U}}^{\prime} \mathrm{M}_{\mathrm{k}} \hat{\mathrm{U}}$ where $\mathrm{M}_{\mathrm{k}}:=\frac{1}{2} \sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i} \mathrm{k}} \mathrm{a}_{\mathrm{i} \mathrm{k}} \mathrm{a}_{\mathrm{i}}$ - Compute $\hat{\mathrm{I}}_{k}:=\sqrt{\frac{1}{m} \sum_{i} \boldsymbol{y}_{i, k} ; \text { set } \hat{\boldsymbol{b}}_{k}=\hat{\boldsymbol{g}}_{k}=\hat{\boldsymbol{v}}_{k} \hat{\mathrm{I}}_{k} \text { and } \hat{\boldsymbol{x}}_{k}:=\hat{\boldsymbol{U}} \hat{\boldsymbol{g}}_{k}}$

Loop Iterations

- For $t=1$ to T, repeat the following three steps
(1) for all $k=1,2, \ldots, q_{,} \hat{\boldsymbol{C}}_{k} \leftarrow \operatorname{diag}\left(\right.$ phase $\left(\boldsymbol{A}_{k}^{\prime} \hat{\boldsymbol{U}} \hat{\boldsymbol{b}}_{k}\right)$
(2) $\hat{\boldsymbol{U}} \leftarrow \arg \min _{\tilde{U}} \sum_{k}\left\|\hat{\boldsymbol{C}}_{k} \sqrt{\boldsymbol{y}_{k}}-\boldsymbol{A}_{k}^{\prime} \hat{\boldsymbol{U}} \hat{b}_{k}\right\|^{2}$
(3) for all $k=1,2, \ldots, q, \hat{b}_{k} \leftarrow \arg \min _{\boldsymbol{b}_{k}}\left\|\hat{\boldsymbol{C}}_{k} \sqrt{\boldsymbol{y}_{k}}-\boldsymbol{A}_{k}^{\prime} \hat{\boldsymbol{U}} \tilde{\boldsymbol{b}}_{k}\right\|^{2}$

Output $\hat{\boldsymbol{x}}_{k}=\hat{\boldsymbol{U}} \hat{\boldsymbol{b}}_{k}$'s for all $k=1,2, \ldots, q$
Steps 2 and 3 involve solving a LS problem

ALGORITHM DERIVATION

- \boldsymbol{X} : rank $r \Longrightarrow$ can be written as $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{B}$
\boldsymbol{U} is an $n \times r$ matrix with mutually orthonormal columns
- $\boldsymbol{B}=\left[\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots \boldsymbol{b}_{q}\right]$ is an $r \times q$ matrix independent of \boldsymbol{U}

Let $\frac{1}{q} \boldsymbol{X} \boldsymbol{X}^{\prime}=\frac{1}{q} \sum_{k=1}^{q} \boldsymbol{x}_{k} \boldsymbol{x}_{k}{ }^{\prime} \stackrel{\text { EVD }}{=} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\prime}$ denote the reduced eigenvalue decomposition (EVD) of $\boldsymbol{X} \boldsymbol{X}^{\prime} / q$

Compute Û:
Define $\boldsymbol{Y}_{U, 0}:=\frac{1}{m q} \sum_{i=1}^{m} \sum_{k=1}^{q} \boldsymbol{y}_{i, k} \boldsymbol{a}_{i, k} \boldsymbol{a}_{i, k}^{\prime}$
It is not hard to see that $\mathbb{E}\left[\boldsymbol{Y}_{U, 0} \mid \boldsymbol{U}\right]=2 \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\prime}+\operatorname{trace}(\boldsymbol{\Lambda}) \boldsymbol{I}$
The subspace spanned by top r eigenvectors of above matrix is range (\boldsymbol{U}) and the gap between its r-th and $(r+1)$-th eigenvalue is $2 \lambda_{\min }(\boldsymbol{\Lambda})$
If m and q are large enough, L.L.N $\Longrightarrow \boldsymbol{Y}_{U, 0} \approx \mathbb{E}\left[\boldsymbol{Y}_{U, 0}\right]$
. So by $\sin \theta$ theorem (Davis-Kahan'71), the span of top r eigenvectors of $\boldsymbol{Y}_{U, 0}$ is close to span of \boldsymbol{U}
Let $\boldsymbol{w}_{i, k}=\sqrt{\boldsymbol{y}_{i k}} \boldsymbol{a}_{i, k} ; \boldsymbol{w}_{i, k}$ is heavy-tailed

- More samples are needed for law of large numbers to take effect
- Solution : truncating $\boldsymbol{w}_{i, k}$'s

Compute $\hat{\boldsymbol{U}}$ as the top r eigenvectors of \boldsymbol{Y}_{U}
Compute $\hat{b}_{\mathbf{k}}^{\prime} s$
If $\hat{\boldsymbol{U}}$ indep of \boldsymbol{M}_{k}, then $\mathbb{E}\left[\boldsymbol{Y}_{b, k} \mid \hat{\boldsymbol{U}}\right]=2 \boldsymbol{g}_{k} \boldsymbol{g}_{k}{ }^{\prime}+\left\|\boldsymbol{x}_{k}\right\|^{2} \boldsymbol{I}$, and $\boldsymbol{g}_{k}=\hat{\boldsymbol{U}}^{\prime} \boldsymbol{U} \boldsymbol{b}_{k}$
Top eigenvector of this expectation is proportional to \boldsymbol{g}_{k} and the gap between its first and second eigenvalues is
$2\left\|\boldsymbol{g}_{k}\right\|^{2}=2\left\|\hat{\boldsymbol{U}}^{\prime} \boldsymbol{U} \boldsymbol{b}_{k}\right\|^{2}$
If $\hat{\boldsymbol{U}} \approx \boldsymbol{U}$, then $\left\|\boldsymbol{g}_{k} \mid \approx\right\| \boldsymbol{b}_{k} \|$ and $\hat{\boldsymbol{U}} g_{k} \approx \boldsymbol{U} \boldsymbol{b}_{k}$
If $\hat{\boldsymbol{U}} \approx \boldsymbol{U}$ and m is large enough, then top eigenvector of $\boldsymbol{Y}_{b, k}$ is a good approximation of \boldsymbol{b}_{k}
Compute $\hat{\boldsymbol{b}}_{k}$ as the top eigenvector of $\boldsymbol{Y}_{b, k}$ and scale it

THEOREM

- Assume $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{B}$ and \boldsymbol{B} independent of \boldsymbol{U}

Let $\overline{\boldsymbol{\Lambda}}:=\frac{1}{q} \sum_{k} \boldsymbol{b}_{k} \boldsymbol{b}_{k}{ }^{\prime}, \overline{\boldsymbol{\lambda}}_{\text {max }}$ its maximum eigenvalue and κ condition number
For each $\boldsymbol{x}_{k}, k=1,2, \ldots, q$, we observe

- m measurements $\boldsymbol{y}_{i, k}:=\left(\boldsymbol{a}_{i, k}{ }^{\prime} \boldsymbol{x}_{k}\right)^{2}$ with $\boldsymbol{a}_{i, k} \stackrel{\text { iid }}{\sim} \mathcal{N}(0, \boldsymbol{I})$
- \tilde{m} measurements $\boldsymbol{y}_{i, k}^{\text {new }}:=\left(\boldsymbol{a}_{i}^{\text {new' }} \boldsymbol{x}_{k}\right)^{2}$ with $\boldsymbol{a}_{i}^{\text {new }} \stackrel{\text { id }}{\sim} \mathcal{N}(0, \boldsymbol{I})$, and with $\boldsymbol{a}_{i}^{\text {new, }}$ independent of $\boldsymbol{a}_{i, k}$, s
- Suppose that $r \leq c n^{1 / 5}$ and $q \leq c n^{2}$

For an $\varepsilon<1$, if

$$
\begin{aligned}
& \tilde{m} \geq \frac{c \sqrt{n}}{\varepsilon^{2}}, m \geq \frac{c \kappa^{2} r^{4}(\log n)(\log \tilde{m})^{2}}{\varepsilon^{2}}, \\
& m q \geq \frac{c \kappa^{2} n r^{4}(\log \tilde{m})^{2}}{\varepsilon^{2}},
\end{aligned}
$$

- With probability at least $1-\frac{c}{n^{2}}$,
(1) $\mathrm{SE}(\hat{\boldsymbol{U}}, \boldsymbol{U}):=\left\|\left(\boldsymbol{I}-\hat{\boldsymbol{U}} \hat{\boldsymbol{U}}^{\prime}\right) \boldsymbol{U}\right\| \leq \frac{c \varepsilon}{r \log \tilde{m}} ;$
(2) $\operatorname{NormErr}(\boldsymbol{X}, \hat{\boldsymbol{X}}):=\frac{\sum_{k=1}^{q} d \operatorname{dist}\left(\boldsymbol{x}_{k}, \hat{\boldsymbol{x}}_{k}\right)^{2}}{\sum_{k=1}^{q}\left\|\boldsymbol{x}_{k}\right\|^{2}} \leq c \varepsilon$

DISCUSSION

If $r=c \log n$ and $q=c n$, we only need $\mathbf{m}+\tilde{\mathbf{m}} \geq \mathbf{c} \sqrt{\mathbf{n}}$, in comparison with at least $c n$ which is needed by single vector $P R$ methods
$c \sqrt{n}$ can be replaced by $c n^{1 / d}$ for any $d \geq 2$ also
To just recover \boldsymbol{U} with $\operatorname{SE}(\hat{\boldsymbol{U}}, \boldsymbol{U}) \leq c \varepsilon$, we need only $m q=c n r^{2}$ measurements

- when r is small, this is only a little more than the minimum required, $n r$

Contact Information

Code is available at the following link:
http://www.ece.iastate.edu/ s̃arana
Email: sarana@iastate.edu
Email: namrata@iastate.edu

- Email: yonina@ee.technion.ac.il

Technion
Israel Institute of Technology

