# facebook

### HASHING FOR NEAREST NEIGHBOR SEARCH

Compress a set of vectors  $(x_i)_{i=1}^n$ ,  $x_i \in \mathbb{R}^d$ 



(as defined by  $\mathcal{L}_2$  )

## SUPERVISED HASHING

Compress a set of vectors and their labels  $((x_i, y_i))_{i=1}^n, x_i \in \mathbb{R}^d, y_i \in \{1, \ldots, L\}$  $x_1, y_1$ 01010110  $x_2, y_2$ ► 11001010 -• • • . . .  $x_n, y_n$ 10010010→ 10011000 - $\rightarrow x_{\text{test}}$ 

Do results have label  $y_{\text{test}}$ ?

- Supervised hashing [1, 2]: labels *y* known for all *x* in the reference set
- Semi-supervised hashing [3, 4]: labels y known for only  $n_{label}$  samples

## REFERENCES

[1] X. Wang, T. Zhang, G. Qi, J. Tang, and J. Wang, "Supervised quantization for similarity search," CVPR, 2016

[2] H. Liu, R. Wang, S. Shan, and X. Chen, "Deep supervised hashing for fast image retrieval," *CVPR,* 2016

[3] F. Shen, C. Shen, W. Liu, and H. Shen, "Supervised discrete hashing," CVPR, 2015 [4] W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang, "Supervised hashing with kernels," CVPR, 2012

[5] H. Jégou, M. Douze and C. Schmid, "Product quantization for nearest neighbor search," IEEE TPAMI, 2011



## How should we evaluate supervised hashing?

Alexandre Sablayrolles, Matthijs Douze, Nicolas Usunier, Hervé Jégou Facebook AI Research





$$\mathbb{P}(x \text{ correct for } q) = \sum_{j \text{ lab}} = \langle \mathbb{P}(q) \rangle$$

$$= \langle \mathbb{P}(\cdot|x), \mathbb{P}(\cdot|q) \rangle$$
$$\approx \langle \underbrace{\widehat{\mathbb{P}}(\cdot|x)}_{\text{classifier}}, \widehat{\mathbb{P}}(\cdot|q) \rangle$$

| Why not just encode the class id?                                                                                                                                                                                                                   | How can we avoid this biased protocol?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supervised hashing with classification baseline<br>• Trivial binary encoding of the class id, <i>e.g.</i> $y = 9 \rightarrow 1001$<br>$x_1, y_1$ 0011<br>$x_2, y_2$ $\longrightarrow$ 1011<br>$\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$ | transfer 75 train75 test75<br>hashing 25 test25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $x_n, y_n$ 0111                                                                                                                                                                                                                                     | Irain only Base only Query set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Train classifier on pairs (x<sub>1</sub>, y<sub>1</sub>),, (x<sub>n</sub>, y<sub>n</sub>) and predict ŷ<sub>test</sub> with the classifier</li> <li>Guaranteed performance: mAP ≥ classifier accuracy</li> </ul>                           | <ul> <li>Iest on classes never seen at train time</li> <li>Split classes in 4 folds, each with 25% of classes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EXTENSION TO SEMI-SUPERVISED HASHING<br>$\mathbb{P}(x \text{ correct for } q) = \sum_{i \text{ label}} \mathbb{P}(j x)\mathbb{P}(j q)$ • Train $\widehat{\mathbb{P}}$ on labelled images                                                            | <ul> <li>Train hash functions on train75</li> <li>Encode train25 with hash functions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| • Compute $\widehat{\mathbb{P}}(\cdot x) \in [0,1]^L$ for $x$<br>= $\langle \mathbb{P}(\cdot x), \mathbb{P}(\cdot q) \rangle$ • Unlabelled                                                                                                          | Setup 1: Retrieval with hash codes Setup 2: Classification on hash codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\approx \langle \underbrace{\widehat{\mathbb{P}}(\cdot x)}_{\text{classifier}}, \widehat{\mathbb{P}}(\cdot q) \rangle  \bullet \text{ Compress } \widehat{\mathbb{P}}(\cdot x) \text{ with one-hot / LSH}$                                         | <ul> <li>Use train25 as reference set</li> <li>Use test25 as queries</li> <li>Train classifier using train25 labels</li> <li>Evalute accuracy on test25</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Results                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                              | <ul> <li>Experimental setting</li> <li>Unsupervised PQ codes [5] with 4 bytes</li> <li>Setup 1: Retrieval with hash codes</li> <li>PQ codes with asymmetric comparison</li> <li>Higher layers are better</li> <li>4 bytes enough for most of performance</li> <li>Inner product on softmax gets the best result</li> <li>Setup 2: Classification on hash codes</li> <li>Drop in accuracy due to encoding</li> <li>Lower layers more generic -&gt; better accuracy</li> <li>Lower layers high dimensional -&gt; larger gap between PQ and full vector</li> <li>-&gt; Trade-off encoding/accuracy</li> </ul> |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |







