How should we evaluate supervised hashing?
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HASHING FOR NEAREST NEIGHBOR SEARCH WHY NOT JUST ENCODE THE CLASS ID? HOW CAN WE AVOID THIS BIASED PROTOCOL?
Compress a set of vectors (z;)"_,, x; € R? Supervised hashing with classification baseline -
e Trivial binary encoding of the class id, e.g. y = 9 — 1001 transfer 72 train75 : test75 :
> L2 > 00110001 - :‘r/'é’ Y2 > 1011
Tn 01100010 J %?yn 0111 Train only ] Base only [] Query set
- o Test on classes never seen at train time
> Ltest > 00001101 > Hamming distance e Train classifier on pairs (z1,v1), ..., (Tn, ¥, ) and predict Yies; with the classifier , , ,
o e Split classes in 4 folds, each with 25% of classes
\o Guaranteed performance: mAP > classifier accuracy p
Both setups
e etimad by 2 EXTENSION TO SEMI-SUPERVISED HASHING e Train hash functions on train75
N\ i J | | R e Encode train25 with hash functions
P(x correct for q) = Z P(jlz)P(jl9) e Train P on labelled images
SUPERVISED HASHING j label e Compute B(|z) € [0, 1] for
= (P(-|z), P(-|9)) labelled | Setup 1: Retrieval with hash codes Setup 2: Classification on hash codes
Compress a set of vectors and their labels ((z;,v;))",, z; € R, y; € {1,...,L} R R uniabelled p <
~ (P(|z),P(-g)) e Compress IP(:|z) with one-hot / LSH e Use train25 as reference set e Train classifier using train25 labels
1, 01010110 \_ classitier ) o Use test25 as queries e Evalute accuracy on test25
> 1292 > 11001010 - @ \ J
- . RESULTS
o 10010010 l UNSUPERVISED BASELINE FOR PROPOSED PROTOCOL
Features njgpe Nanchors Method  bits mAP
> Ltest > 10011000 > Hamming distance GIST 29,000 1,000 38 {H %8 8'?2‘21 AP Experimental setting
One-hot 4  0.762< Simple classification baseline 25% MUl MLFQ M= o Experiments with CIFAR-10 using AlexNet
GIST 5000 1,000 SDH[3] 64 0.402 / = 10x more compact 0% e Unsupervised PQ codes [5] with 4 bytes
One-hot 4 0.377 with similar performance
Do results have label Yest ? L5H 64 0.430 15% Setup 1: Retrieval with hash codes
Topline - 0.578
10%
e Supervised hashing [1, 2]: labels y known for all = in the reference set GIST 1,000 300 KSH[4] 12 0.232 e PQ codes with asymmetric comparison
Semi ised hashing [3, 4]: labels y known for onl 1 AN O o Higher | bett
\o emi-supervised hashing [3, 4]: labels y known for only nj4,e samples p One-hot 4 0.270 e Higher layers are better
LSH 48 0.309 O e fa et cofrm, e 4 bytes enough for most of performance
REFERENCES fopline - 0550 Jreat Vethod  bie mAP@I500 e Inner product on softmax gets the best result
Deep 50,000 - DSH[2] 12 0616 /[ Catres HVEnod PHs M Accuracy i transfer
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