PIPA: A New Proximal Interior Point Algorithm for Large-Scale Convex Optimization

Marie-Caroline Corbineau¹, Emilie Chouzenoux^{1,2}, Jean-Christophe Pesquet¹

 $^1{\rm CVN}$, CentraleSupélec, Université Paris-Saclay, France $^2{\rm LIGM}$, UMR CNRS 8049, Université Paris-Est Marne la Vallée, France

19 April 2018 Calgary, ICASSP 2018

Numerical Results

In collaboration with

E. Chouzenoux

J.-C. Pesquet

Introduction		
0000		
Interior Point N	lethods	

Many problems in signal/image processing (image restoration, enhancement, denoising/deblurring, spectral unmixing) can be formulated as constrained minimization problems \rightarrow need efficient methods for solving those.

Introduction		
0000		
	A . I I	

Interior Point Methods

Many problems in signal/image processing (image restoration, enhancement, denoising/deblurring, spectral unmixing) can be formulated as constrained minimization problems \rightarrow need efficient methods for solving those.

Constrained Problem $\mathcal{P}_0:$ $\min_{x \in \mathbb{R}^n}$ f(x)s.t. $(\forall i \in \{1, \dots, p\})$ $c_i(x) \leq 0$

where

$$\begin{array}{l} \bullet \ f: \mathbb{R}^n \mapsto] - \infty, + \infty] \text{ convex} \\ \bullet \ (\forall i \in \{1, \dots, p\}) \ c_i : \mathbb{R}^n \mapsto] - \infty, + \infty] \text{ convex, smooth} \end{array}$$

Introduction			
0000			

Proposed Method

Numerical Results

Conclusion

Interior Point Methods

Many problems in signal/image processing (image restoration, enhancement, denoising/deblurring, spectral unmixing) can be formulated as constrained minimization problems \rightarrow need efficient methods for solving those.

Constrained Problem

 $\begin{array}{ll} \mathcal{P}_0: & \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ & s.t. & (\forall i \in \{1, \dots, p\}) & c_i(x) \leq 0 \end{array}$

where

■
$$f : \mathbb{R}^n \mapsto] - \infty, +\infty]$$
 convex
■ $(\forall i \in \{1, \dots, p\}) c_i : \mathbb{R}^n \mapsto] - \infty, +\infty]$ convex, smooth

How to minimize *f* while ensuring that every iterate is feasible?

Introduction	
0000	

Proposed Method

Numerical Results

Conclusion

Interior Point Methods

Many problems in signal/image processing (image restoration, enhancement, denoising/deblurring, spectral unmixing) can be formulated as constrained minimization problems \rightarrow need efficient methods for solving those.

Constrained Problem

$$\begin{array}{ll} \mathcal{P}_0: & \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ & s.t. & (\forall i \in \{1, \dots, p\}) & c_i(x) \leq 0 \end{array}$$

where

■
$$f : \mathbb{R}^n \mapsto] - \infty, +\infty]$$
 convex
■ $(\forall i \in \{1, \dots, p\}) c_i : \mathbb{R}^n \mapsto] - \infty, +\infty]$ convex, smooth

How to minimize *f* while ensuring that every iterate is feasible?

 \rightarrow Add a barrier function

 \mathcal{P}_0 is replaced by a sequence of subproblems $(\mathcal{P}_{\mu_j})_{j\in\mathbb{N}}.$

Introdu						
About	IPMs	0000		00	00000000	
Log	arithmic Barrier					
	Constrained Problem	1				
	1	P ₀ : min	imize $f(x)$)		
		S	s.t. $(\forall i$	$\in \{1,\ldots,p\}$	$) c_i(x) \le 0$	
				\Downarrow		
	Unconstrained Subp	roblem				
	7	$P_{\mu}: \min_{x}$	$\stackrel{\text{himize}}{\in \mathbb{R}^n} f(x)$	$\underbrace{-\mu\sum_{i=1}^{p}}_{\rightarrow +\infty \text{ as}}$	$\ln(-c_i(x))$	
	Where $\mu > 0$ is the	barrier par	ameter.			

\mathcal{P}_0 is replaced by a sequence of subproblems $(\mathcal{P}_{\mu_j})_{j\in\mathbb{N}}$.

- Subproblems are solved approximately for a sequence $\mu_j \rightarrow 0$.
- Main advantage : every iterate is feasible.
- Primal-dual algorithm : superlinear convergence for NLP. [Gould et al., 2001]

Introduction 0000 About IPMs	Proposed Method 0000	Numerical Results 000000000	Conclusion
Logarithmic Ba	arrier		
Constrained I	Problem		
	\mathcal{P}_0 : minimiz	the $f(x)$	
	s.t.	$(\forall i \in \{1,\ldots,p\}) \ c_i(x) \leq 0$	
		\Downarrow	
Unconstraine	d Subproblem		
	$\mathcal{P}_{\mu}: \mathop{minimiz}\limits_{x\in\mathbb{R}^n}$	the f(x) $\underbrace{-\mu \sum_{i=1}^{p} \ln(-c_i(x))}_{\rightarrow +\infty \text{ as } c_i(x) \rightarrow 0^-}$	

Where $\mu > 0$ is the barrier parameter.

\mathcal{P}_0 is replaced by a sequence of subproblems $(\mathcal{P}_{\mu_i})_{j \in \mathbb{N}}$.

- Subproblems are solved approximately for a sequence $\mu_j \rightarrow 0$.
- Main advantage : every iterate is feasible.
- Primal-dual algorithm : superlinear convergence for NLP. [Gould et al., 2001]

X Require the inversion of an $n \times n$ matrix at each step : medium size applications.

× First or second order methods : limited to smooth functions. [Armand et al., 2000]

Introduction		
0000		
Problem of Inte	prest	

Quality of the solution and robustness against noise can be improved by adding a non-differentiable term (ℓ_1 , TV, ...).

Composite Constrained Problem

 $\begin{array}{ll} \mathcal{P}_0: & \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) + g(x) \\ & s.t. & (\forall i \in \{1, \dots, p\}) \ c_i(x) \leq 0 \end{array}$

where

■
$$f : \mathbb{R}^n \mapsto] - \infty, +\infty]$$
 convex, non-differentiable
■ $g : \mathbb{R}^n \mapsto] - \infty, +\infty]$ convex, smooth

• $(\forall i \in \{1, \dots, p\}) \ c_i : \mathbb{R}^n \mapsto] - \infty, +\infty]$ convex, smooth

Proposed Method 0000	Proposed Method Numerical Results 0000 00000000 .

Quality of the solution and robustness against noise can be improved by adding a non-differentiable term (ℓ_1 , TV, ...).

Composite Constrained Problem

 $\begin{array}{ll} \mathcal{P}_0: & \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) + g(x) \\ & s.t. & (\forall i \in \{1, \dots, p\}) & c_i(x) \leq 0 \end{array}$

where

- $f : \mathbb{R}^n \mapsto] \infty, +\infty]$ convex, non-differentiable
- $g: \mathbb{R}^n \mapsto]-\infty, +\infty]$ convex, smooth
- $(\forall i \in \{1, \dots, p\}) \ c_i : \mathbb{R}^n \mapsto] \infty, +\infty]$ convex, smooth

How to address the non-smooth term while ensuring that every iterate is feasible?

Proposed Method 0000	Proposed Method Numerical Results 0000 00000000 .

Quality of the solution and robustness against noise can be improved by adding a non-differentiable term (ℓ_1 , TV, ...).

Composite Constrained Problem

 $\begin{array}{ll} \mathcal{P}_0: & \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) + g(x) \\ & s.t. & (\forall i \in \{1, \dots, p\}) & c_i(x) \leq 0 \end{array}$

where

- $f : \mathbb{R}^n \mapsto] \infty, +\infty]$ convex, non-differentiable
- $g: \mathbb{R}^n \mapsto]-\infty, +\infty]$ convex, smooth
- $(\forall i \in \{1, \dots, p\}) \ c_i : \mathbb{R}^n \mapsto] \infty, +\infty]$ convex, smooth

How to address the non-smooth term while ensuring that every iterate is feasible?

 \rightarrow Combine the logarithmic barrier method with proximal tools.

Notation and I	Definitions	
About IPMs		
0000		
Introduction		

- Let $S^+(\mathbb{R}^N)$ be the set of symmetric positive definite matrices of $\mathbb{R}^{N \times N}$.
- The weighted norm induced by $U \in S^+(\mathbb{R}^N)$ is $\|.\|_U = \sqrt{\langle . | U. \rangle}$.
- Let $\Gamma_0(\mathbb{R}^N)$ denote the set of proper lower semicontinuous convex functions from \mathbb{R}^N to $] \infty, +\infty]$.

Proximity Operator

The proximal operator $\operatorname{prox}_{f}^{U}(x)$ of $f \in \Gamma_{0}(\mathbb{R}^{N})$ at $x \in \mathbb{R}^{N}$ relative to the metric induced by $U \in S^{+}(\mathbb{R}^{N})$ is the unique vector $\widehat{y} \in \mathbb{R}^{N}$ such that

$$f(\widehat{y}) + \frac{1}{2} \|\widehat{y} - x\|_U^2 = \inf_{y \in \mathbb{R}^N} f(y) + \frac{1}{2} \langle y - x \mid U(y - x) \rangle.$$

a. http://proximity-operator.net/

Example :

- Indicator function : projection.
- ℓ_1 norm : soft-thresholding.

Proposed Method	
0000	

Proposed Approach

 \mathcal{P}_0 is replaced by a sequence of subproblems $(\mathcal{P}_{\mu_i})_{j \in \mathbb{N}}$.

Our algorithm comprises two interlocked loops.

- Given $\mu_j > 0$, $(x_{j,k})_k$ is produced via several forward-backward (proximal gradient) steps.
- Once $x_{j,k}$ is close enough to the solution of \mathcal{P}_{μ_j} , the barrier parameter μ_j is updated.

	Proposed Method	
	0000	
Iteration Schem		

Forward-Backward Step

For *j* fixed,

$$\mathbf{x}_{j,k+1} = \mathrm{prox}_{\gamma_{j,k}f}^{A_{j,k}}(\mathbf{x}_{j,k} - \gamma_{j,k}A_{j,k}^{-1}\nabla \varphi_{\mu_j}(\mathbf{x}_{j,k}))$$

where
$$\varphi_{\mu_j}(x) = g(x) - \mu_j \sum_{i=1}^p \ln(-c_i(x)).$$

	Proposed Method	
	0000	
Iteration Sche	eme	

Forward-Backward Step

For *j* fixed,

$$\mathbf{x}_{j,k+1} = \operatorname{prox}_{\gamma_{j,k}f}^{A_{j,k}}(\mathbf{x}_{j,k} - \gamma_{j,k}A_{j,k}^{-1}\nabla \varphi_{\mu_j}(\mathbf{x}_{j,k}))$$

where
$$\varphi_{\mu_j}(x) = g(x) - \mu_j \sum_{i=1}^p \ln(-c_i(x)).$$

Gradient step on the smooth term;

	Proposed Method	
	0000	
Iteration Sche	eme	

Forward-Backward Step

For *j* fixed,

$$\mathbf{x}_{j,k+1} = \mathbf{prox}_{\gamma_{j,k}f}^{A_{j,k}}(\mathbf{x}_{j,k} - \gamma_{j,k}A_{j,k}^{-1}\nabla \varphi_{\mu_j}(\mathbf{x}_{j,k}))$$

where
$$\varphi_{\mu_j}(x) = g(x) - \mu_j \sum_{i=1}^p \ln(-c_i(x)).$$

- Gradient step on the smooth term ;
- Proximal step on the non-differentiable function f;

Proposed Method	
0000	

Iteration Scheme

Forward-Backward Step

For *j* fixed,

$$\mathbf{x}_{j,k+1} = \mathrm{prox}_{\gamma_{j,k}f}^{\mathbf{A}_{j,k}}(\mathbf{x}_{j,k} - \gamma_{j,k}\mathbf{A}_{j,k}^{-1}\nabla \varphi_{\mu_j}(\mathbf{x}_{j,k}))$$

where
$$\varphi_{\mu_j}(x) = g(x) - \mu_j \sum_{i=1}^p \ln(-c_i(x)).$$

- Gradient step on the smooth term ;
- Proximal step on the non-differentiable function f;
- Preconditioner A_{i,k} for acceleration [Chouzenoux et al., 2016];

Proposed Method	
0000	

Iteration Scheme

Forward-Backward Step

For *j* fixed,

$$x_{j,k+1} = \operatorname{prox}_{\gamma_{j,k}f}^{A_{j,k}}(x_{j,k} - \gamma_{j,k}A_{j,k}^{-1}\nabla\varphi_{\mu_j}(x_{j,k}))$$

where
$$\varphi_{\mu_j}(x) = g(x) - \mu_j \sum_{i=1}^p \ln(-c_i(x)).$$

- Gradient step on the smooth term;
- Proximal step on the non-differentiable function f;
- Preconditioner A_{i,k} for acceleration [Chouzenoux et al., 2016];
- Stepsize $\gamma_{j,k} > 0$ found using a backtracking strategy [Salzo, 2017] since φ_{μ_j} is not Lipschitz-differentiable.

Proposed Method	
0000	

Algorithm

Proximal Interior point Algorithm (PIPA)

```
Initialization
    Let \bar{\gamma} > 0, (\delta, \theta) \in ]0, 1[^2, \mu_0 > 0;
    Initialize x_{0,0} such that (\forall i \in \{1, ..., p\}) c_i(x_{0,0}) < 0;
For j = 0, 1, ...
     For k = 0.1....
          Choose A<sub>i,k</sub> satisfying a boundedness condition ;
          For l = 0, 1, ...
             \tilde{x}_{i,k}^{l} = \operatorname{prox}_{\bar{\gamma}\theta^{l}f}^{A_{j,k}}(x_{j,k} - \bar{\gamma}\theta^{l}A_{i,k}^{-1}\nabla\varphi_{\mu_{j}}(x_{j,k})); 
                Stop if the backtracking condition is met;
         x_{j,k+1} = \tilde{x}_{j,k}^{l};
\gamma_{i,k} = \bar{\gamma}\theta^{l};
           Stop if precision conditions are met;
     x_{i+1,0} = x_{i,k+1};
     Update \mu_i:
```

Numerical Results

Theoretical Results

Assumptions

- \blacksquare The set of solutions to \mathcal{P}_0 is nonemtpy and bounded;
- f, g and the constraints are convex, g is Lipschitz-differentiable and the constraints are continuously twice-differentiable;
- The strict interior of the feasible set is nonempty;
- $(\forall j \in \mathbb{N}) \ f + \varphi_{\mu_i}$ is a Kurdyka-Lojasiewicz (KL) function;
- $(\forall j \in \mathbb{N}) (A_{j,k})_k$ are bounded from above and from below;
- If $\lim_{j\to\infty} \mu_j = 0$ and $(\forall i \in \{1, \ldots, 4\})$ $\lim_{j\to\infty} \epsilon_{i,j}/\mu_j = 0$.

Convergence

Under some mild technical assumptions :

- for all $j \in \mathbb{N}$, $(x_{j,k})_{k \in \mathbb{N}}$ converges to a solution to \mathcal{P}_{μ_i} ;
- $(x_{j,0})_{j\in\mathbb{N}}$ is bounded and every cluster point of it is a solution to \mathcal{P}_0 ;
- if in addition strict complementarity holds, and if there exists $i \in \{1, ..., p\}$ such that c_i is strictly convex (or alternatively, for linear constraints, if some full rank property is satisfied) then $(x_{j,0})_{j \in \mathbb{N}}$ converges to a solution to \mathcal{P}_0 .

Proposed Method

Numerical Results

Hyperspectral Unmixing Problem

Numerical Results

Hyperspectral Unmixing Model

Optimization Problem

ninimize $X \in \mathbb{R}^{p \times n}$	$\frac{1}{2} \ Y - SX\ _2^2 + \kappa \sum_{i=1}^p \ (WX_i)_d\ _1$
s.t.	$(orall j \in \{1,\ldots,n\}) \; \sum_{i=1}^p X_{i,j} \leq 1$
	$(\forall i \in \{1, \dots, p\})(\forall j \in \{1, \dots, n\}) X_{i,j} \ge 0$

- p, n, s: number of endmembers, pixels, spectral bands
- $Y \in \mathbb{R}^{s \times n}$: observation
- $S \in \mathbb{R}^{s \times p}$: library
- $X \in \mathbb{R}^{p \times n}$: abundance matrix
- $W \in \mathbb{R}^{n \times n}$: orthogonal wavelet basis
- $\|(.)_d\|_1 : \ell_1$ norm of the detail wavelet coefficients

		Numerical Results	
		00000000	
Experimental	Setting		
	Jelling		

- Urban¹ data set : p = 6 endmembers (known spectral signatures), s = 162 spectral bands, $n = 256 \times 256$ pixels
- Gaussian noise : $\sigma^2 = 4.1 \times 10^{-3}$.

^{1.} http://www.escience.cn/people/feiyunZHU/Dataset_GT.html

		Numerical Results	
		00000000	
Evnerimental	Setting		
	Jelling		

- Urban¹ data set : p = 6 endmembers (known spectral signatures), s = 162 spectral bands, $n = 256 \times 256$ pixels \rightarrow *large-scale pb* : $> 3.9 \times 10^5$ *variables*.
- Gaussian noise : $\sigma^2 = 4.1 \times 10^{-3}$.

^{1.} http://www.escience.cn/people/feiyunZHU/Dataset_GT.html

		Numerical Results		
		00000000		
Experimental Setting				

- Urban¹ data set : p = 6 endmembers (known spectral signatures), s = 162 spectral bands, $n = 256 \times 256$ pixels \rightarrow *large-scale pb* : $> 3.9 \times 10^5$ variables.
- Gaussian noise : $\sigma^2 = 4.1 \times 10^{-3}$.

Reconstruction Model

- Regularization weight : $\kappa = 10^{-2}$.
- W : orthogonal Daubechies 4 wavelet decomposition over 2 resolution levels.

^{1.} http://www.escience.cn/people/feiyunZHU/Dataset_GT.html

		Numerical Results			
		0000000			
Experimental Setting					

- Urban¹ data set : p = 6 endmembers (known spectral signatures), s = 162 spectral bands, $n = 256 \times 256$ pixels \rightarrow *large-scale* $pb : > 3.9 \times 10^5$ variables.
- Gaussian noise : $\sigma^2 = 4.1 \times 10^{-3}$.

Reconstruction Model

- Regularization weight : $\kappa = 10^{-2}$.
- W : orthogonal Daubechies 4 wavelet decomposition over 2 resolution levels.

Algorithm Parameters

- Variable metric : $A_{j,k} := \nabla^2 \varphi_{\mu_j}(x_{j,k})$ [Becker *et al.*, 2012].
- The barrier parameter $(\mu_j)_{j \in \mathbb{N}}$ and the stopping criteria $\{\epsilon_{i,j}/\mu_j\}_{i \in \{1,...,4\}}$ follow a geometric decrease.

 $^{1. \} http://www.escience.cn/people/feiyunZHU/Dataset_GT.html$

		Numerical Results			
		00000000			
Experimental Setting					

- Urban¹ data set : p = 6 endmembers (known spectral signatures), s = 162 spectral bands, $n = 256 \times 256$ pixels \rightarrow *large-scale* $pb : > 3.9 \times 10^5$ variables.
- Gaussian noise : $\sigma^2 = 4.1 \times 10^{-3}$.

Reconstruction Model

- Regularization weight : $\kappa = 10^{-2}$.
- W : orthogonal Daubechies 4 wavelet decomposition over 2 resolution levels.

Algorithm Parameters

- Variable metric : $A_{j,k} := \nabla^2 \varphi_{\mu_j}(x_{j,k})$ [Becker *et al.*, 2012].
- The barrier parameter $(\mu_j)_{j \in \mathbb{N}}$ and the stopping criteria $\{\epsilon_{i,j}/\mu_j\}_{i \in \{1,...,4\}}$ follow a geometric decrease.

Implementation

- Matlab R2016b, Intel Xeon 3.2 GHz processor and 16 GB of RAM.
- Code will be available soon on https://github.com/mccorbineau.

^{1.} http://www.escience.cn/people/feiyunZHU/Dataset_GT.html

Comparison

State-of-the-Art Algorithms

- No reg : interior point least squares algorithm without regularization [Chouzenoux *et al.*, 2014]
- ADMM : alternating direction of multipliers method [Setzer et al., 2010]
 - PDS : primal-dual splitting algorithm [Combettes et al., 2014]
 - GFBS : generalized forward-backward splitting algorithm [Raguet et al., 2013]

Numerical Results

Evaluation Metric

Signal-to-Noise Ratio

$$\mathsf{SNR} = -10 \log_{10} \left(\sum_{i=1}^{p} \frac{\|X_i - \bar{X}_i\|_2^2}{\|\bar{X}_i\|_2^2} \right) \quad ; \quad \mathsf{SNR}_i = -10 \log_{10} \left(\frac{\|X_i - \bar{X}_i\|_2^2}{\|\bar{X}_i\|_2^2} \right)$$

where \bar{X}_i is the true abundance map of the ith endmember.

Distance from the Iterates to the Solution

$$\frac{\|x_{j,k}-x_{\infty}\|_2}{\|x_{\infty}\|_2}$$

where x is the vectorization of X and x_{∞} is obtained after a very large number of iterations.

		Numerical Results		
		00000000		
Quantitative Results				

 \blacksquare No reg : SNR = 1.96 dB / With regularization : SNR = 3.65 dB

FIGURE - Left : global SNR versus time. Right : distance from the iterates to the solution versus time.

	Asphalt Road	Grass	Tree	Roof	Metal	Dirt
No reg	10.12	11.21	11.86	14.91	4.90	13.68
ADMM	6.75	11.47	12.56	14.66	7.57	11.47
PDS	2.06	3.33	4.73	6.63	-0.08	10.27
GFBS	2.17	3.57	4.76	7.66	0.05	10.31
PIPA	10.98	11.70	12.73	15.19	7.06	14.57

TABLE - SNR (dB) for all endmembers after 13 sec.

Introduction 0000 Visual Results Proposed Method

Numerical Results

Conclusion

Asphalt Road

No reg	10.12
ADMM	6.75
PDS	2.06
GFBS	2.17
PIPA	10.98

TABLE - SNR (dB)

FIGURE – Abundance map of asphalt road after 13 sec.

Introduction 0000 Visual Results Proposed Metho 0000 Numerical Results

Conclusion

Grass

FIGURE - Abundance map of grass after 13 sec.

Introduction 0000 Visual Results Proposed Metho 0000 Numerical Results

Conclusion

Dirt

FIGURE - Abundance map of dirt after 13 sec.

Conclusion

Application of a new proximal interior point algorithm to hyperspectral unmixing with a non-differentiable regularization.

- Convergence guaranteed under mild assumptions.
- Possibility to include an arbitrary preconditioner.
- Good performance in the context of a large-scale image recovery application.
- $\rightarrow\,$ Extension of the convergence proof to inexact proximity operator.
- \rightarrow Other applications.

Numerical Results

References

	N. I. M. Gould, D. Orban, A. Sartenaer and P. L. Toint.
	Superlinear convergence of primal-dual interior point algorithms for nonlinear programming SIAM Journal on Optimization, Vol. 11, No. 4, pp 974–1002, 2001.
	P. Armand, J. C. Gilbert and S. Jan-Jégou. A feasible BFGS interior point algorithm for solving convex minimization problems
_	SIAM Journal on Optimization, Vol. 11, No. 1, pp 199-222, 2000.
	E. Chouzenoux, JC. Pesquet and A. Repetti.
	A block coordinate variable metric forward-backward algorithm Journal of Global Optimization, Vol. 66, No. 3, pp 457–485, 2016.
	S. Salzo.
	The variable metric forward-backward splitting algorithm under mild differentiability assumptions SIAM Journal on Optimization, Vol. 27, No. 4, pp 2153–2181, 2017.
	S. Setzer, G. Steidl and T. Teuber.
_	Deblurring Poissonian images by split Bregman techniques Journal of Visual Communication and Image Representation, Vol. 21, No. 3, pp 193–199, 2010.
	E. Chouzenoux, M. Legendre, S. Moussaoui and J. Idier.
	Fast constrained least squares spectral unmixing using primal-dual interior-point optimization IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 1, pp 59–69, 2014.
	P. L. Combettes, L. Condat, JC. Pesquet and B. C. Vű.
_	A forward-backward view of some primal-dual optimization methods in image recovery Proceedings of the IEEE International Conference on Image Processing (ICIP 2014), pp 4141–4145, 2014.
	H. Raguet, J. Fadili, G. and Peyré.
_	A generalized forward-backward splitting SIAM Journal on Imaging Sciences, Vol. 6, No. 3, pp 1199–1226, 2013.
	S. Becker and J. Fadili.
	A forward-backward view of some primal-dual optimization methods in image recovery Proceedings of the 25th Advances in Neural Information Processing Systems Conference (NIPS 2012), pp 2618–2626, 2012

	Conclusion

Thank you!

Stopping Criteria

Backtracking [Salzo, 2017]

For j and k fixed, the backtracking procedure stops if :

$$\left\langle arphi_{\mu_j}(ilde{\mathbf{x}}_{j,k}^I) - arphi_{\mu_j}(\mathbf{x}_{j,k}) - \left\langle ilde{\mathbf{x}}_{j,k}^I - \mathbf{x}_{j,k} \mid
abla arphi_{\mu_j}(\mathbf{x}_{j,k})
ight
angle \leq rac{\delta}{ar{\gamma} heta^I} \| ilde{\mathbf{x}}_{j,k}^I - \mathbf{x}_{j,k} \|_{A_{j,k}}^2$$

If f := 0, Armijo linesearch along the steepest direction.

Stopping Criteria

Backtracking [Salzo, 2017]

For j and k fixed, the backtracking procedure stops if :

$$\left\langle arphi_{\mu_j}(ilde{\mathbf{x}}_{j,k}^I) - arphi_{\mu_j}(\mathbf{x}_{j,k}) - \left\langle ilde{\mathbf{x}}_{j,k}^I - \mathbf{x}_{j,k} \mid
abla arphi_{\mu_j}(\mathbf{x}_{j,k})
ight
angle \leq rac{\delta}{ar{\gamma} heta^I} \| ilde{\mathbf{x}}_{j,k}^I - \mathbf{x}_{j,k} \|_{A_{j,k}}^2$$

If f := 0, Armijo linesearch along the steepest direction.

Accuracy for Solving \mathcal{P}_{μ_i}

The barrier parameter is decreased as soon as the following criteria are met :

$$\begin{split} \|x_{j,k} - x_{j,k+1}\| &\leq \epsilon_{1,j} & \frac{1}{\gamma_{j,k}} \|A_{j,k}(x_{j,k} - x_{j,k+1})\| \leq \epsilon_{2,j} \\ \sum_{i=1}^{p} \left|\frac{c_i(x_{j,k+1})}{c_i(x_{j,k})} - 1\right| &\leq \epsilon_{3,j} & \mu_j \left\|\sum_{i=1}^{p} \frac{\nabla c_i(x_{j,k}) - \nabla c_i(x_{j,k+1})}{c_i(x_{j,k})}\right\| \leq \epsilon_{4,j} \\ \text{where } \{(\epsilon_{i,j})_{j\in\mathbb{N}}\}_{i\in\{1,\dots,4\}} \text{ and } (\mu_j)_{j\in\mathbb{N}} \text{ are strictly positive sequences converging to 0} \\ \text{such that } (\forall i \in \{1,\dots,4\}) & \lim_{j\to\infty} \epsilon_{i,j}/\mu_j = 0. \end{split}$$

Tree

FIGURE - Abundance map of tree after 13 sec.

Roof

FIGURE - Abundance map of roof after 13 sec.

Metal

Groundtruth

PDS

No reg

PIPA

TABLE - SNR (dB)

FIGURE - Abundance map of metal after 13 sec.

GFBS

Corbineau, Chouzenoux, Pesquet