Spatio-Temporal Binary Video Inpainting via Threshold Dynamics M. Oliver (maria.oliverp@upf.edu), R. P. Palomares, C. Ballester, G. Haro Universitat Pompeu Fabra (Barcelona)

1 Introduction

- Variational method for the completion of moving shapes through binary video inpainting that works by smoothly recovering the objects into an inpainting hole.
- The model takes into account the optical flow and motion occlusions.
- The algorithm is based on threshold dynamics.

2 The Model

Let $u_0(\mathbf{x},t)$ be a binary video sequence defined on $\mathcal{V} \setminus \mathcal{M}$, where $\mathcal{V} = \{(\mathbf{x},t) : \mathbf{x} =$

Experiment where a damaged object is recovered

Frame 0020

 $(x,y) \in \Omega, t \in \mathbb{R}$ is the video domain and $\mathcal{M} \subset \mathcal{V}$ denotes the inpainting hole with missing information. We propose to solve the following optimization problem:

$$\min_{\mathcal{V} \to \{0,1\}} \int_{\mathcal{M}} \|\mathcal{L}(u)\|^2, \quad \text{s.t. } u = u_0 \text{ in } \mathcal{V} \setminus \mathcal{M},$$
(1)

where the operator $\mathcal{L}(u)$ is

$$\mathcal{L}(u) = (u_x, u_y, \gamma \chi \partial_{\mathbf{v}} u), \qquad \gamma > 0.$$
(2)

If we make $\gamma \to \infty$, problem (1) is equivalent to

 $u:\mathcal{V}$

$$\min_{u:\mathcal{V}\to\{0,1\}} \int_{\mathcal{M}} \|\tilde{\mathcal{L}}(u)\|^2, \quad \text{s.t. } u = u_0 \text{ in } \mathcal{V} \setminus \mathcal{M},$$
(3)

where,

$$\tilde{\mathcal{L}}(u) = \partial_{\mathbf{v}} u. \tag{4}$$

- The first and last frames are inpainted using the inpainting model proposed in [3].
- We want the functional to only impose temporal regularity along the pixel trajectories that are not occluded. χ indicates the occlusion areas.
- The convective derivative is defined as

$$\partial_{\mathbf{v}} u(\mathbf{x}, t) = \nabla u(\mathbf{x}, t) \cdot \mathbf{v}(\mathbf{x}, t) + \frac{\partial u}{\partial t}(\mathbf{x}, t).$$
(5)

Optical Flow Estimation

1- Equation (5) involves the Optical Flow. 2- We also need to inpaint the optical flow

Inp. using TV-L1 OF and the proposed operator \mathcal{L} .

We tried our model with different OF esti- in the inpainted regions.

mations.

GroundTruth OF. TV-L1 OF. NLTV-CSAD OF.

Occlusion Estimation

We propose to use the method proposed in [6]:

Frame 0015 Frame 0014

Occlusion map.

3 Algorithm: Threshold Dynamics

We consider the equivalent problem:

$$\min \int \varepsilon \|\mathcal{L}(u)\|^2 + \frac{1}{-W(u)}, \quad \text{s.t. } u = u_0 \text{ in } \mathcal{V} \setminus \mathcal{M}.$$
(7)

Frame 0014 Frame 0015

OF-inpainting [5].

Inpainting results using 3D MBO [2].

Fig. 4: Experiment with alley_1 sequence from Sintel [1]: Inpainting results with different methods and optical flow estimations.

Experiment where an object is removed

Frame 0001

Pbject to be inpainted (white), object to be removed (gray)

Optical flow interpolated inside the inpainting mask.

Estimated occlusions from the interpolated optical flow.

$\frac{1}{u} \int_{\mathcal{M}} \mathcal{L}_{\mathcal{M}} \mathcal{L}_{\mathcal{M}}$

where $\varepsilon > 0$ and $W(u) = u^2 (1 - u^2)$. The gradient descent equation for the above functional is:

> $u_s = 2\varepsilon \left(\Delta u + \gamma^2 (\chi \partial_{\mathbf{v}})^* \chi \partial_{\mathbf{v}} u \right) - \frac{1}{\varepsilon} W'(u),$ (8)

where $(\chi \partial_{\mathbf{v}})^*$ denotes the adjoint operator of $\chi \partial_{\mathbf{v}}$.

Then, starting by an initial spatio-temporal shape \mathcal{T}^0 and, considering its (binary) characteristic function $u^0 = \mathbb{1}_{\mathcal{T}^0}$, the core of the threshold dynamics scheme that we propose consists of the iteration of the following steps until convergence:

. **Diffusion step**. Compute $\bar{u}(\tau)$, the solution of the following PDE for a certain small diffusion time τ , with initial condition $\bar{u}(0) = \mathbb{1}_{\mathcal{T}^n}$.

 $u_s = \Delta u + \gamma^2 (\chi \partial_{\mathbf{v}})^* \chi \partial_{\mathbf{v}} u$

2. Thresholding step. Binarize by defining the shape $\mathcal{T} = \{\mathbf{x} : \bar{u}(\tau)(\mathbf{x}) \geq \frac{1}{2}\}$ 3. Fidelity step. $\mathcal{T}^{n+1} = (\mathcal{T} \cap \mathcal{M}) \cup (\mathcal{T}^0 \cap (\mathcal{V} \setminus \mathcal{M}))$. We impose that the binary video coincides with the original video outside the inpainting domain.

White object inpainted.

Fig. 5: Removal of an object in a video sequence (cave2).

5 Numerical Results

Root mean square error of the inpainting results in some sequences from Sintel dataset [1].

	MBO[2]	$\widetilde{\mathcal{L}}$	${\cal L}$
alley_1	0.18	0.55	0.06
ambush_4	0.46	0.54	0.26
$market_5$	0.34	0.23	0.07
$shaman_3 (seq.1)$	0.25	0.10	0.05
$shaman_3 (seq.2)$	0.63	0.63	0.48
temple_3	0.23	0.36	0.15

6 References

[1] D.J.Butler, J.Wulff, G.B.Stanley, M.J.Black (2012) [2] B.Merriman, J.Bence, S.Osher (1992) [3] M.Oliver, G.Haro, M.Dimiccoli, B.Mazin, C.Ballester (2016) [4] R.P.Palomares, G.Haro, C.Ballester (2014) [5] R.P.Palomares, E.Meinhardt-Llopis, C.Ballester, G.Haro (2016) [6] P.Sand, S.Teller (2008) [7] C.Zach, T.Pock, H.Bischof (2007)

Spatio-Temporal Binary Video Inpainting via Threshold Dynamics (continuation: More Results)

Experiments where a damaged object is recovered

Frame 0018

Frame 0020

Frame 0015

Frame 0016

Inpainting mask (gray) and incomplete object (white).

Occlusion maps.

Occlusion maps.

Groundtruth Inpainting results.

Inpainting using the proposed operator $\tilde{\mathcal{L}}$.

Inpainting using the proposed operator \mathcal{L} .

Inpainting results using 3D-MBO [2].

Frame 0010

Frame 0012

Inpainting mask (gray) and incomplete object (white).

Groundtruth Inpainting results.

Inpainting using the proposed operator $\tilde{\mathcal{L}}$.

Inpainting using the proposed operator \mathcal{L} .

Inpainting results using 3D-MBO [2].

Frame 0010

Inpainting mask (gray) and incomplete object (white).

Occlusion maps.

Groundtruth Inpainting results

Inpainting using the proposed operator $\tilde{\mathcal{L}}$.

Inpainting using the proposed operator \mathcal{L} .

Inpainting results using 3D-MBO [2].

Groundtruth inpainting results.

Inpainting results using the proposed operator $\tilde{\mathcal{L}}$.

Inpainting results using the proposed operator \mathcal{L} .

Inpainting results using 3D-MBO [2].

Experiments where an object is removed

Object to be inpainted (white), object to be removed (gray).

Optical flow interpolated inside the inpainting mask.

Estimated occlusions of an object in a video sequence.

White object inpainted.

Object to be inpainted (white), object to be removed (gray).

Optical flow interpolated inside the inpainting mask.

Estimated occlusions of an object in a video sequence.

White object inpainted.