Spatio-Temporal Binary Video Inpainting via Threshold Dynamics

M. Oliver (maria.oliverp@upf.edu), R. P. Palomares, C. Ballester, G. Haro Universitat Pompeu Fabra (Barcelona)

1 Introduction

- Variational method for the completion of moving shapes through binary video inpainting that works by smoothly recovering the objects into an inpainting hole
- The model takes into account the optical flow and motion occlusions
- The algorithm is based on threshold dynamics.

2 The Model

Let $u_{0}(\mathbf{x}, t)$ be a binary video sequence defined on $\mathcal{V} \backslash \mathcal{M}$, where $\mathcal{V}=\{(\mathbf{x}, t): \mathbf{x}=$ $(x, y) \in \Omega, t \in \mathbb{R}\}$ is the video domain and $\mathcal{M} \subset \mathcal{V}$ denotes the inpainting hole with missing information. We propose to solve the following optimization problem:

$$
\begin{equation*}
\min _{1, \mathcal{L} \rightarrow\{0,1\}} \int_{\mathcal{M}}\|\mathcal{L}(u)\|^{2}, \quad \text { s.t. } u=u_{0} \text { in } \mathcal{V} \backslash \mathcal{M} \tag{1}
\end{equation*}
$$

where the operator $\mathcal{L}(u)$ is

$$
\begin{equation*}
\mathcal{L}(u)=\left(u_{x}, u_{y}, \gamma \chi \partial_{\mathbf{v}} u\right), \quad \gamma>0 \tag{2}
\end{equation*}
$$

If we make $\gamma \rightarrow \infty$, problem (1) is equivalent to

$$
\begin{equation*}
\min _{u: \mathcal{V} \rightarrow\{0,1\}} \int_{\mathcal{M}}\|\tilde{\mathcal{L}}(u)\|^{2}, \quad \text { s.t. } u=u_{0} \text { in } \mathcal{V} \backslash \mathcal{M} \text {, } \tag{3}
\end{equation*}
$$

where,

$\tilde{\mathcal{L}}(u)=\partial_{\mathrm{v}} u$.

- The first and last frames are inpainted using the inpainting model proposed in [3].
- We want the functional to only impose temporal regularity along the pixel trajectories that are not occluded. χ indicates the occlusion areas
- The convective derivative is defined as

$$
\begin{equation*}
\partial_{\mathbf{v}} u(\mathbf{x}, t)=\nabla u(\mathbf{x}, t) \cdot \mathbf{v}(\mathbf{x}, t)+\frac{\partial u}{\partial t}(\mathbf{x}, t) . \tag{5}
\end{equation*}
$$

Optical Flow Estimation
1- Equation (5) involves the Optical Flow. 2- We also need to inpaint the optical flow We tried our model with different OF esti- in the inpainted regions.
mations

Occlusion Estimation
We propose to use the method proposed in [6]
$\chi(\mathbf{x}, t)= \begin{cases}1 & \text { if } \operatorname{div}(\mathbf{v}) \geq-0.5(\text { visible at } \mathrm{t}+1) \\ 0 & \text { else }(\text { not visible at } \mathrm{t}+1)\end{cases}$

3 Algorithm: Threshold Dynamics

We consider the equivalent problem

$$
\begin{equation*}
\min _{u} \int_{\mathcal{M}} \varepsilon\|\mathcal{L}(u)\|^{2}+\frac{1}{\varepsilon} W(u), \quad \text { s.t. } u=u_{0} \text { in } \mathcal{V} \backslash \mathcal{M} \text {. } \tag{7}
\end{equation*}
$$

where $\varepsilon>0$ and $W(u)=u^{2}\left(1-u^{2}\right)$
The gradient descent equation for the above functional is

$$
\begin{equation*}
u_{s}=2 \varepsilon\left(\Delta u+\gamma^{2}\left(\chi \partial_{\mathbf{v}}\right)^{*} \chi \partial_{\mathbf{v}} u\right)-\frac{1}{\varepsilon} W^{\prime}(u) \tag{8}
\end{equation*}
$$

where $\left(\chi \partial_{\mathbf{v}}\right)^{*}$ denotes the adjoint operator of $\chi \partial_{\mathbf{v}}$
Then, starting by an initial spatio-temporal shape \mathcal{T}^{0} and, considering its (binary) characteristic function $u^{0}=\mathbb{1}_{\mathcal{T}^{0}}$, the core of the threshold dynamics scheme that we propose consists of the iteration of the following steps until convergence:

1. Diffusion step. Compute $\bar{u}(\tau)$, the solution of the following PDE for a certain small diffusion time τ, with initial condition $\bar{u}(0)=\mathbb{1}_{\mathcal{T}^{n}}$

$$
u_{s}=\Delta u+\gamma^{2}\left(\chi \partial_{\mathbf{v}}\right)^{*} \chi \partial_{\mathbf{v}} u
$$

2. Thresholding step. Binarize by defining the shape $\mathcal{T}=\left\{\mathbf{x}: \bar{u}(\tau)(\mathbf{x}) \geq \frac{1}{2}\right\}$
. Fidelity step. $\mathcal{T}^{n+1}=(\mathcal{T} \cap \mathcal{M}) \cup\left(\mathcal{T}^{0} \cap(\mathcal{V} \backslash \mathcal{M})\right)$. We impose that the binary video coincides with the original video outside the inpainting domain.

4 Results

Experiment where a damaged object is recovered

Inpainting results using 3D MBO [2].
Fis 4 Experime with alley 1 secquence from Sintel [1]. Inpainting results with different methods and optical fow estimations
Experiment where an object is removed

White object inpainted.
Fig. 5: Removal of an object in a video sequence (cave2)

5 Numerical Results
Root mean square error of the inpainting results in some sequences from Sintel dataset [1].

	MBO [2]	$\tilde{\mathcal{L}}$	\mathcal{L}
alley_1	0.18	0.55	0.06
ambush_4	0.46	0.54	0.26
market_5	0.34	0.23	0.07
shaman_3 (seq.1)	0.25	0.10	. 05
shaman_3 (seq.2)	0.63	0.63	0.48
temple_3	0.23	0.3	

6 References

[1] D.J.Butler, J.Wulff, G.B.Stanley,M.J.Black (2012) 2] B.Merriman, J. Bence, S. Osher (1992) 3] M. Oliver, G.Haro, M.Dimiccoli, B.Mazin, C.Ballester (2016) 44 R.P.Palomares, G. Haro, C.Ballester (2014)
5] R.P.Palomares, E.Meimhardt-Llopis, C.Ballester, G. Haro (2016) 6] P.Sand, S.Teller (2008)
${ }_{7}$ I C. Zach. T. Poock.H.BBischof (2007)

Spatio-Temporal Binary Video Inpainting via Threshold Dynamics (continuation: More Results)

Experiments where a damaged object is recovered

Inpainting results using 3D-MBO [2]
Experiments where an object is removed

