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A novel video-based multi-target tracking system is proposed by
combining the particle PHD filter with discriminative group-
structured dictionary learning.

Learn a discriminative dictionary with group structure information.
The collaborative hierarchical Lasso (C-HiLasso) model is used to
compute this multi-task group-structured sparse representation.

A novel jomt likelihood calculation aims to further improve the

particle PHD updating step using the maximum voting technique.

Particle PHD Filter Framework

» The target state model at time k can be denoted as X;, = {x},', m =
1,...,My}, and Z, is the measurement set. The PHD prediction
equation 1s given as:

Uk tie—1 Xie|Zr—1) = [ Prepe—1 X O Vk—111=1(£)d () + Y
» The analogue of the state transition probability in the single target
case 1s defined as:

Gri—1 Xk €) = exire—1 ) k-1 Xk 1) + Brjke—1 Xk [E)

> Given a set of particles {X%, @L_, ;:'fk"lxw at time k, the PHD

prediction at time k can be represented with a set of weighted

particles mcluding both survived targets and new-born targets
(Mg—1+Jg)XN

{X;, 5;;’,'|k—1 g , and the weights represented as:

¢k|k_1(ii<)fb"§c_1 survived particles

Tei-1 = | _ Vi born particl
newborn particles
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» The update step of the particle PHD filter is given as:
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where
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» The number of targets is calculated as:
(Mg—1+JK)XN

2,
=1
» A resampling step that eliminates particles with low importance

weight and avoids the degeneracy problem will be performed after
the update step.
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Dictionary Construction

We extract two types of features with sufficient training data from| | > Initialization: ey and e; are the vectors of all ones; the gqth group of

each 1mage patch in the target region, the grey-scale histogram of
oriented gradients (HOG) and colour histogram,
HOG feature : F, = [h4, ..., h,] e R'h*0

’ Cn] € ]RTCXH

Colour feature : F. = ¢4, ...
For simplicity, the HOG and colour features can be concatenated to a
combined vector set,

F=[f,.., f,]eRTctTh)>n

Learning a discriminative group-structured dictionary, allows the
dictionary atoms in each class to be well clustered, and results in a
large within-class similarity.
The discriminative dictionary comprised of independent sub-

dictionaries belonging to different groups is transformed from the

original feature template F,
D=|D ...D £ Rexn
[ [.91]’ g [gq]]

The group structure is defined as G = {gy,..., g4}, g4 1s the sub-
dictionary index. The group structure G has g groups with the same

number of [ sub-dictionary atoms in each group.

Discriminative Group-Structured Dictionary
Learning for Multi-Target Tracking
> A target y € R within the current frame will be approximated by the
linear combination of known targets from training samples,
y ~Da=od; + ard, +--- + a,d,,

R*" and the learned dictionary D €

Given by the input signals Y €
R4*™ the sparse coefficients matrix A = [ay, ...,ap] € R™" can be

accomplished by the following C-HiLasso model,

: 1
min, > I¥ — DAIIF + 2, TyeallAllr + 20 Bl

AeR"xh
Multiple test targets from the same category associated with
dictionary atom share the same sparsity pattern at the group level,
which can be achieved by the within-class multi-task group
structured sparsity model.

The group structure could enforce the sparse coefficients for
different classes to deal with different subspaces, so the sparse

coefficients would be further strengthened to simultaneously

discriminate the candidate targets from the background clutter.

Weight Calculation by Maximum Voting

the sparse vector a[q]| with the same length [.
» For each category C do

C

e.{Acelj g - .g1: ---:gq:

Maximum voting method : 8 = arg m;x(rg), r’™a% = max(r,);

Compute the ratios: 7; =

> For test target i = 1, ..., N do
Calculate the average of the selected sparse code:

n = Xioi{ai[6]};

Compute the weight function: y, (X},) = {

0 r™M¥* < g, if outlier

exp— (XN Mk g
End

End
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Fig. 1: Illustration of multi-task structured sparsity solution in particle representation
induced by the C-HiLasso model.

Experimental Results

» We evaluate both the effectiveness and strength of our proposed

tracking method via implementing it on the video sequences from

the well-known CAVIAR and PETS2009 datasets.

Method | Proposed | PHD filter | PHD-SRC MB
method | method method | method

OSPA(pixel) m 48.26 3439 | 33.71

AEE(pixel) | 19.71 | 32.24 | 2662 | 25.46

(a)
Method | Proposed | PHD filter | PHD-SRC MB
method | method | method | method
OSPA(pixel) | 19.51 | 32.54 2416 | 23.06
AEE(pixel) 12.17 22.89 17.57 15.01
(b)

Table I: Quantitative comparison of different method (a) CAVIAR (b) PETS2009 dataset
» The optimal subpattern assignment (OSPA) metric and average
Euclidean error (AEE) both serve as the performance measure, in
order to evaluate and compare our proposed tracking system with

other state-of-the-art tracking method.
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Fig. 2: OSPA comparison of different tracking systems

Conclusion and Future Work

Proposed a novel multi-target tracking method mcorporating the

particle PHD filter with discriminative group-structured dictionary

learning.

» Explored the properties of group-structured dictionary learning to

improve the discriminative power of sparse coding.

» A new joint likelihood calculation based on the collaborative

structured sparsity was applied to overcome the challenging tracking

problems.

» Future work will mtegrate an online approach to update our group-

structured dictionary, this updated dictionary will be dealing with

the appearance changes of the target in order to further improve the

accuracy.
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