

BIOLOGICALLY INSPIRED SPEECH EMOTION RECOGNITION

Reza Lotfidereshgi, Philippe Gournay {Reza.Lotfi.Dereshgi, Philippe.Gournay}@USherbrooke.ca

1. Summary

- Emotions are critical in speech communication
- The precise set of spectral and prosodic features for their automatic recognition is unknown
- A biologically-inspired system that operates on raw speech data and thus requires no feature extraction is proposed
- State of the art performance is achieved

3. Preprocessing

- LP analysis: An order 16 LP filter is computed every 5ms using a 30ms Hamming window
- **Source contribution:** Log-energy of 5ms segments of each output of a 77-channel gammatone filterbank
- Vocal tract contribution: Frequency response of each LP filter, on an Equivalent Rectangular Bandwith (ERB) scale, in dB

4. Liquid State Machine design

- 77*3*3 neurons arranged in a 3D structure with local synapse connections to create a tonotopic structure
- Integrate-and-fire neurons inspired from biological cortical neurons
- Asymmetric Spike Time-Dependent Plasticity (STDP) models of synaptic plasticity tuned for vocal tract and source reservoirs separately
- Dimensionality reduction by Principal Component Analysis (PCA) of the average activity of the neurons
- Final stage is Linear Discriminant Analysis (LDA)

2. Overview of the system

Université de Sherbrooke

Speech and Audio Research Group 2500, boul. de l'Université Sherbrooke (Québec) J1K 2R1 Canada

5. Performance Evaluation

- The proposed method was tested on the Berlin Database of Emotional Speech (Emo-DB)
- The highest recognition rate of 82.35% was achieved for 29 vocal tract and 44 source principal components
- This rate falls to 75.73% for a single-reservoir classifier with no source and vocal tract separation

6. Conclusions

- The proposed method operates directly on the speech signal, thus requires no feature extraction
- It is also largely inspired by biology:
 - Separating source and vocal tract contributions builds upon the motor theory of human speech perception
 - Both these contributions are analyzed on the perceptuallyrelevant ERB scale
 - Spiking neurons and synaptic plasticity models are very • close to actual cortical neurons
- Outperforms current methods on comparable data