

Lucky DCT Aggregation for Camera Shake Removal

Sanjay Ghosh, Satyajit Naik, and Kunal N. Chaudhury Department of Electrical Engineering, Indian Institute of Science. Email: {sghosh, satyajit, kunal}@ee.iisc.ernet.in

OBJECTIVES

- ► To remove the effect of camera shake during a long exposure in hand-held photography.
- ► A simple and cheap algorithm that can effectively recover the original sharp image from multiple burst images.

INTRODUCTION

Modern cameras come with a *burst* mode for capturing a series of images in quick succession. ■ *Multiple-image blind deconvolution* [1, 2]: recovering a sharp image from such a burst.

The mathematical model is that we have blurred versions $y_1, y_2, ..., y_N$ of a sharp image x:

 $y_i = k_i * x + \sigma n_i \qquad (i = 1, \dots, N),$

where (k_i) are the blurring kernels, (n_i) are i.i.d. $\mathcal{N}(0,1)$, and σ is the noise level.

The problem is to recover the unknown image *x* from the *burst* images $y_1, y_2, ..., y_N$.

PROPOSED ALGORITHM

Input: Images y_1, y_2, \ldots, y_N of size $M_1 \times M_2 \times c$. **Parameters**: Integers $p \ge 0$ and $N_0 \le N$. **Output:** Output image \hat{x} . **Initialize**: Null images w, Y, Z of size $M_1 \times M_2 \times c$; 1. for i = 1, 2, ..., N do Compute \mathcal{E}_i using (1); end 2. Rank images according to decreasing \mathcal{E}_i values 3. Select first N_0 images for $i = 1, 2, \ldots, N_0$ do % DCT $Y_i = \mathcal{D}(y_i);$ $Y_i = \mathcal{G}(Y_i);$ % Smoothing $Z = Z \oplus |Y_i|^p$ end 4. for $i = 1, 2, ..., N_0$ do $\bar{w}_i = |Y_i|^p \oslash Z \ w_i = \mathcal{G}(\bar{w}_i);$ % Smoothing $Y = Y \oplus (w_i \otimes Y_i)$ % Aggregation $w = w \oplus w_i$ end 5. $\hat{X} = Y \oslash w$; % Normalization 6. $\hat{x} = \mathcal{D}^{-1}(\hat{X}).$ % Inverse DCT

LUCKY DCT AGGREGATION

- \succ The kernels ^{*a*} are used to model the camera shake which occurs due to hand tremor.
- > The proposed method is built upon *lucky* imaging using Dirichlet energy [3] and Fourier Burst Accumulation (FBA) [4].
- \succ The images (total N) are sorted according to decreasing Dirichlet energy. Then the top N_0 images with larges energies aggregated.

The Dirichlet energy for an image *y* is defined as [3]:

$$\mathcal{E} = \sum_{\ell \in \text{support}(y)} \sum_{\Omega_{\ell}} \|\nabla y(\ell)\|^2.$$
(1)

where ∇y is gradient of y and Ω_{ℓ} is an $n \times n$ window around pixel ℓ .

 \succ Let Y_i denote the Gaussian-smoothed version of the DCT of burst image y_i , that is, $Y_i = \mathcal{G}(\mathcal{D}(y_i))$. For some non-negative integer *p*, we define the weights:

$$\bar{w}_i(\nu) = \frac{|Y_i(\nu)|^p}{\sum_{j=1}^{N_0} |Y_i(\nu)|^p},$$
(2)

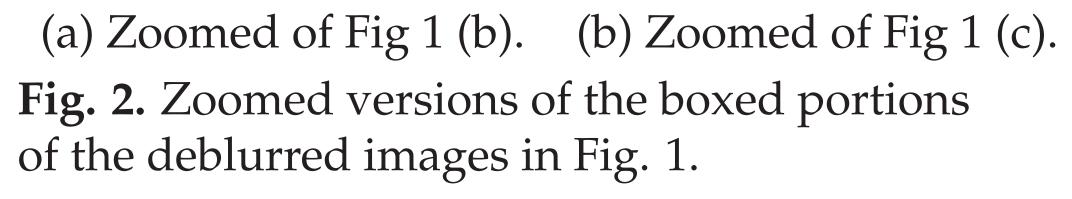

where ν is the frequency index for the DCT. The integer *p* controls the nature of the aggregation.

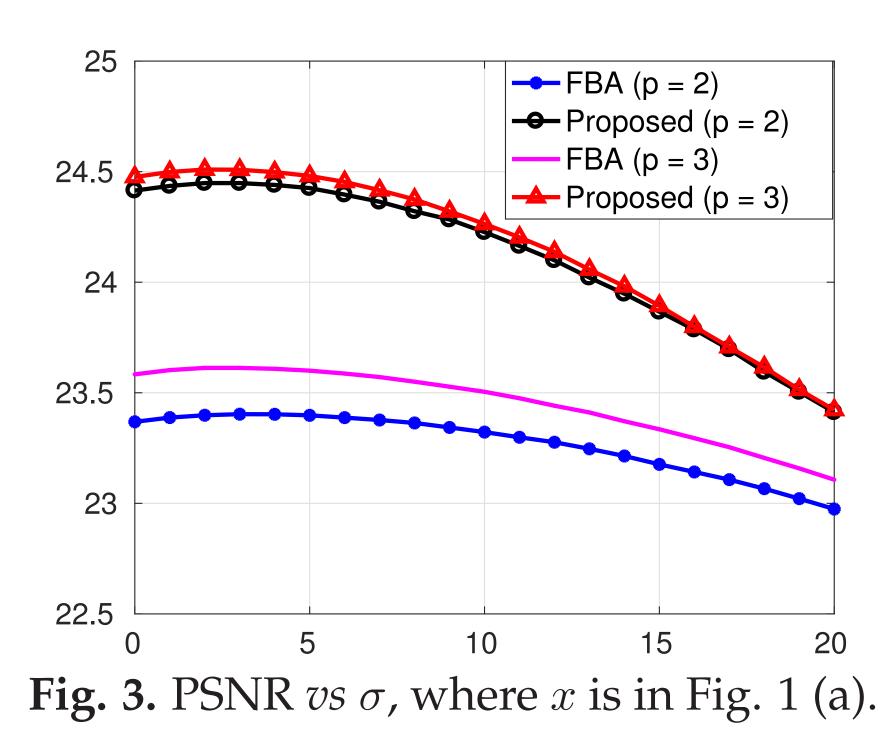
 \succ The DCT of the aggregated image is:

$$\hat{X}(\nu) = \frac{\sum_{i=1}^{N_0} w_i(\nu) Y_i(\nu)}{\sum_{i=1}^{N_0} w_i(\nu)}.$$
(3)

The aggregated image is: $\hat{x} = \mathcal{D}^{-1}(\hat{X})$, where \mathcal{D}^{-1} stands for the inverse DCT.

The complete algorithm is summarized at the left. The symbols \oplus , \otimes , and \oslash denote pixelwise addition, multiplication, and division, performed on each of the *c* channels.





(a) Input image (512×768) . **Fig. 1.** Deblurring results for the blured images (also with additive Gaussian $\sigma = 5$) using FBA [4] and the proposed method. We used $N_0 = 2$ for our method, from the dataset of total N = 14 blurred images.

> The proposed method is faster than [4] by a factor of about N_0/N , neglecting the overhead of computing the Dirichlet energies and ranking them.

CONCLUSIONS

► Better and faster camera shake correction is achieved through *outlier rejection*.

Similar idea can be extended to remove camera shakes from videos.

ACKNOWLEDGEMENTS

• Centenary Conference Travel Fund, Department of Electrical Engineering, IISc.

• SPCOM Student Travel Grant.

REFERENCES

(b) FBA [4], 23.32 / 83.95, 1.76 s. (c) Proposed, 24.22 / 84.20, 0.62 s.

[1] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, "Blind motion deblurring using multiple images," *Journal of Comput. Phys.*, vol. 228, no. 14, 2009.

F. Sroubek and P. Milanfar, "Robust multichannel blind deconvolution via fast alternating minimization," IEEE *Transactions in Image Processing*, vol. 21, no. 4, Apr. 2012.

G. Haro, A. Buades, and J.-M. Morel, "Photographing paintings by image fusion," SIAM Journal in Imaging *Science*, vol. 5, no. 3, 2012.

M. Delbracio and G. Sapiro, "Removing camera shake via weighted fourier burst accumulation," IEEE Transactions *in Image Processing*, vol. 24, no. 11, Nov. 2015.

^{*a*}The kernels in our experiments were obtained from: http://dev.ipol.im/~mdelbra/fba/