
 It is crucial to extract distinctive and representative features of the 

objects and describe them efficiently.

 However, point density variation produces false correspondences 

and causes adverse effects on 3D object detection and pose 

estimation.

Goal:

 Finding the correct correspondences under point density variations

Introduction

POINT DENSITY-INVARIANT 3D OBJECT DETECTION AND POSE ESTIMATION

 Dataset

 Synthetic dataset for the experiment of feature matching under point density variation

 Real dataset for the experiment of pose estimation under the point density variation

 15 test scenes including the point density variation, clutter and occlusion for 3D object 

detection

 Experimental Results

 Our approach outperforms Rusu et al. [1] showing the results of accurate feature 

matching, pose estimation, detection even if the point density variation exists.

 The average computation time to estimate the correspondences and the initial 

pose of each object: Rusu et al. [1]: 2.161 sec, Our approach: 2.164 sec
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<Feature matching> <Pose estimation to different distances from the sensor>

<Pose estimation to viewpoint variation>

https://sites.google.com/site/suakimpf/icip17

Test scenes Proposed methodRusu et al. [1]

 IDEA

 Make the neighbors similar between two point clouds having the different density 
→ Downsampling!!

 We don’t have any prior information about the point density of sparse
point cloud. 
We can’t guess appropriate scale for down-sampling the dense point cloud. 
→ Multi-scale Feature Representation!
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 Point density

 The number of the points inside a fixed sphere when selecting a set of k-neighbor 

points around the keypoints

 Point density variation caused by two different situations

 Two points which are at the same position but having different density

From different distances from the sensor From different viewpoint

<3D object detection in general scenes>

 Best 3D feature descriptor

 Have been evaluated as showing the best performance 

for 3D object and category recognition among 3D features [2].

 Neighbor definition

 Define the neighbors around keypoints using a radius search

 Feature histogram description

 Consider the relationship between all bidirectional pairs of the neighbors

 Consist of angular and photometric features

 Normalization of the histogram increments to deal with point

density variation  BUT, NOT ENOUGH!

 By the number of bi-directional combinations of the neighbors Keypoint detection on

the model point cloud 
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 Multi-scale Feature Representation

 Scale Selection

 3D Object Detection and Pose Estimation


