POINT DENSITY-INVARIANT 3D OBJECT DETECTION AND POSE ESTIMATION

https://sites.google.com/site/suakimpf/icipl7

» ltis crucial to extract distinctive and representative features of the
objects and describe them efficiently.

» However, point density variation produces false correspondences
and causes adverse effects on 3D object detection and pose
estimation.

Goal:
» Finding the correct correspondences under point density variations
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Point Feature Histogram RGB (PFHRGB)™

» Best 3D feature descriptor

= Have been evaluated as showing the best performance
for 3D object and category recognition among 3D features [2].

» Neighbor definition
= Define the neighbors around keypoints using a radius searc[\

» Feature histogram description ..
» Consider the relationship between all bidirectional pairs of the neighbors
= Consist of angular and photometric features
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» Normalization of the histogram increments to deal with point
density variation = BUT, NOT ENOUGH!

= By the number of bi-directional combinations of the neighbors 2 - (k)
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» Point density

» The number of the points inside a fixed sphere when selecting a set of k-neighbor
points around the keypoints

» Point density variation caused by two different situations

From different distances from the sensor From different viewpoint

» Two points which are at the same position but having different density
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IDEA

= Make the neighbors similar between two point clouds having the different density
— Downsampling!!

= We don't have any prior information about the point density of sparse
point cloud.
We can’t guess appropriate scale for down-sampling the dense point cloud.
— Multi-scale Feature Representation!

» Multi-scale Feature Representation

Keypoint detection on Downsampling at PFHRGB description at
the model point cloud coarse levels of scale different scale levels

» Scale Selection
Similarity comparison of Scale selection having Similarity comparison of
density on each keypoint two smallest losses PFHRGB descriptor

» 3D Object Detection and Pose Estimation b
Feature correspondence Rejection of
matching false correspondences
Object detection based
on the refined pose
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> Dataset

= Synthetic dataset for the experiment of feature matching under point density variation
» Real dataset for the experiment of pose estimation under the point density variation

= 15test scenes including the point density variation, clutter and occlusion for 3D object
detection

» Experimental Results

= QOur approach outperforms Rusu et al. [1] showing the results of accurate feature
matching, pose estimation, detection even if the point density variation exists.

* The average computation time to estimate the correspondences and the initial
pose of each object: Rusu et al. [1]: 2.161 sec, Our approach: 2.164 sec
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<Feature matching> <Pose estimation to different distances from the sensor>
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<Pose estimation to viewpoint variation>
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