

In dictionary learning, the proposed EOMP and QKSVD algorithms are applied to learn the corresponding dictionaries and quantization tables to those clusters by optimizing Eq. 1 and Eq. 2 iteratively, and all learned dictionaries and quantization tables are concatenated into a universal dictionary and a merged quantization table respectively.

$$\hat{A} = \arg\min_{A} \{ \|S - DA\|_{F}^{2} - \eta p^{T} \log p \}$$

s.t.
$$\|a_{j}\|_{0} \leq k_{max}$$

Conclusion

In this paper, we present a novel dictionary learning-based image compression approach, which employs

the newly designed EOMP and QKSVD algorithms. Our pilot results suggest that the proposed approach is able to achieve better image compression performance than the benchmark JPEG, JPEG-2000 and KSVD algorithms.

(1)

Dictionary Learning-based Image Compression Hao Wang¹, Yong Xia^{1*}, Zhiyong Wang² ¹Northwestern Polytechnical University, ²University of Sydney

 $\widehat{D} = \arg\min_{D} \|S - D \cdot Q(A)\|_{F}^{2}$ $s.t. \|a_{j}\|_{0} \leq k_{max}$

VIII. The compressed image VII. Sparse reconstruction

Here, S is the ensemble of mean-subtracted patches, D is the dictionary, A is the ensemble of sparse reconstruction coefficients, a_{i} is the j^{th} column in A, k_{max} is the sparsity constraint, p is a probability vector with each element representing the probability of the selecting atom, $Q(\cdot)$ is a non-uniform quantization function.

To quantize larger coefficients with a larger step length and smaller ones with smaller step length, all sparse coefficients are sorted and divided into different groups by minimizing the following sum of square error:

 $\{\hat{L}_1, \hat{L}_2, \cdots, \hat{L}_k\} = \arg\min_{\{L_1, L_2, \dots, L_k\}} \sum_{i=1}^k \sum_{j=1}^{|L_i|} \left(a_{i_j} - \overline{L}_i\right)^2$

Here, L_i is the *i*th group, \overline{L}_i is the mean of L_i , a_{i_i} is the *j*th element of L_i . step length is different among L_i 's, but the same inside L_i .

Results

The proposed algorithm was compared against JPEG, JPEG-2000 and the KSVD algorithms on 10 benchmark images shown in Fig. 2. The quality of compressed images was measured by the peak signal-to-noise ratio (PSNR).

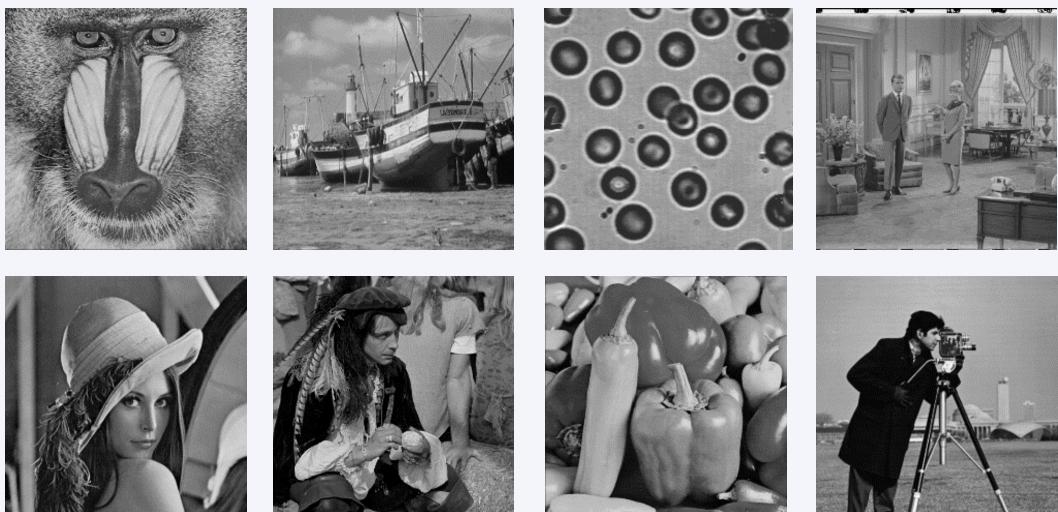
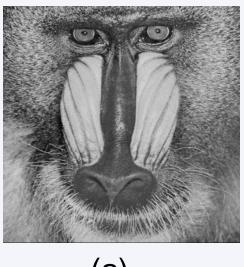


Fig. 2. from left to right and top to bottom, it's the baboon, boat, cell, couple, elaine, lena, man, peppers, photography, and satellite respectively.

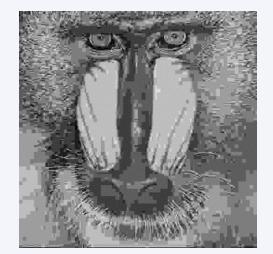
The PSNRs of the ten test images compressed at different bit rates were given in Table 1. It shows that JPEG-2000 and KSVD have a similar performance, and the proposed algorithm achieves the highest PSNR on six out of ten test images when the bit rate is low.

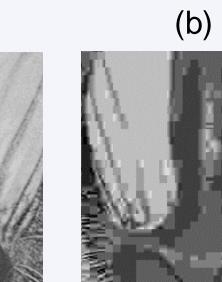
Table 1. The PSNRs of the ten images compressed by JPEG (top left), JPEG-2000 (top right), KSVD(bottom left) and the proposed algorithm (bottom right) at different bit rates.

Baboon	0.18bpp		0.26bpp		0.34bpp		
	20.18	22.78	21.84	23.76	23.02	24.80	
	23.98	26.07	24.99	26.46	25.75	26.95	
Boat	0.16	0.16bpp		0.23bpp		0.28bpp	
	25.12	29.32	27.67	30.95	29.25	32.08	
	29.65	29.90	30.23	30.69	31.19	31.47	


(2)

(3)

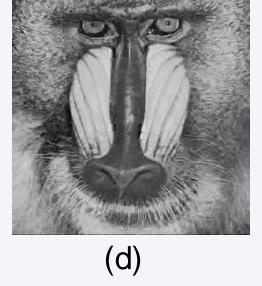




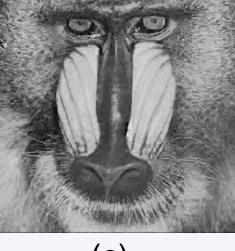
Cell 0.16bpp 27.31 35. 29.66 30. Couple 0.17bpp 25.44 30.				
27.31 35. 29.66 30. Couple 0.17bpp				
Couple 0.17bpp	15			
25.44 30	0.17bpp			
23.77 30.	27			
30.78 31.	09			
Elaine 0.17bpp				
28.73 33.	96			
32.85 32.	99			
Lena 0.16bpp	0.16bpp			
25.89 31.	46			
31.73 32.	04			
Man 0.18bpp	0.18bpp			
23.88 26.	73			
28.55 29.	58			
Peppers 0.16bpp	0.16bpp			
25.97 32.	71			
31.79 31.	93			
Photograph 0.11bpp				
y 24.73 31.	02			
31.16 31.	16			
Satellite 0.18bpp	0.18bpp			
23.67 27.	09			
23.34 23.	56			

proposed algorithm.

Acknowledgements


This work was supported in part by the National Natural Science Foundation of China under Grants 61471297, in part by the Natural Science Foundation of Shaanxi Province, China under Grant 2015JM6287, and in part by the Australian Research Council (ARC) Grants.

0.21	bpp	0.25bpp		
31.13	37.77	33.07	38.75	
30.28	30.89	30.51	31.33	
0.23	bpp	0.29bpp		
27.96	31.71	29.86	32.85	
31.56	32.24	32.51	33.11	
0.23	bpp	0.28bpp		
31.46	34.85	32.89	35.47	
33.66	33.80	34.19	34.20	
0.21	bpp	0.25bpp		
28.60	32.68	30.21	33.84	
32.63	32.75	32.43	32.59	
0.25	bpp	0.32bpp		
25.96	28.06	27.29	29.14	
29.99	30.34	30.64	30.86	
0.21	bpp	0.25bpp		
29.64	34.19	31.12	35.11	
31.96				
21.20	32.81	32.19	32.88	
0.15		32.19 0.18		
0.15	bpp	0.18	рр	
0.15 26.59	bpp 32.04 32.10	0.18 29.21	bpp 33.92 32.65	
0.15 26.59 31.98	bpp 32.04 32.10	0.18 29.21 32.63	bpp 33.92 32.65	
0.15 26.59 31.98 0.25	bpp 32.04 32.10 bpp	0.18 29.21 32.63 0.33	bpp 33.92 32.65 bpp	



(h)

(e)

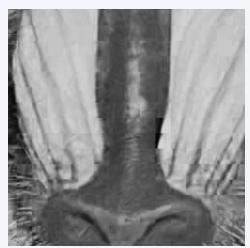


Fig. 3. (a) Original test image Baboon and its compressed versions generated by (b) JPEG, (c) JPEG-2000, (d) KSVD and (e) the