

Introduction

In the past few years, high dimensional data emerge in many domains. Unsupervised feature selection has been proven to be an efficient technique in mitigating the curse of dimensionality. Moreover, the self-similarity property of objects, which assumes that a feature can be represented by the linear combination of its relevant features, has been successfully used in unsupervised feature selection. In this paper, we propose an algorithm that consider both the self-representation property and the manifold structure.

Curse of Dimensionality

1 • . 1 Algorithm

The model discussed above is actually convex, but both the loss function and the regularization terms are non-smooth. In this section, we solve the optimization of MRSR using Iterative Reweighted Least-Squares (IRLS) algorithm. Given the current estimation W^t , we define the diagonal weighting matrice G_L^t, G_R^t by $g_{:,i}^t = 1/2 \|x_i - x_i W^t\|_2, g_{R,i}^t = 1/2 \|w_i^t\|_2$.

 $g_{R,i}^t = 1/\max(\|w_i^t\|_{2})$. The formal algorithm is stated in Algorithom 1.

	E	хре	erir	mei	nta	1 Re	esults													
Dataset warpPIE10P warpAR10P pixraw10P	Laplacian N 20.6 21.1 50.7	MCFS 42.1 22.7 87.6	UDFS 47.9 44.2 69.2	S SPEC 36.1 45.6 48.1	CRSR 43.4 32.8 63.9	MRSR 41.4 44.8 85.1	Dataset I warpPIE10P warpAR10P pixraw10P	Laplacia 20.6 20.2 67.1	n MCFS 54.6 20.0 91.4	UDFS 52.3 48.6 77.4	SPEC 39.7 48.0 54.7	RSR 1 50.3 34.7 72.4	MRSR 51.6 47.9 92.3	Dataset warpPIE10P warpAR10P pixraw10P	Laplaciar 87.0 63.7 70.1	MCFS 99.1 74.4 97.5	UDFS 96.2 83.2 97.2	SPEC RS 86.5 94 74.7 57 49.3 87	R M .8 9 .5 8 .3 9	RSR 9.1 6.6 9.0
orlraw10P TOX-171 CLL-SUB-111 Average	40.1 40.4 37.4 35.1	78.4 40.3 50.9 53.7	72.3 40.3 50.3 54.0	37.81 38.8 50.9 42.9	60.1 42.3 50.6 48.9	76.7 50.0 54.4 58.7	orlraw10P TOX-171 CLL-SUB-111 Average	49.4 11.9 2.9 28.7	84.4 11.8 19.7 47.0	78.1 11.4 14.9 47.1	44.5 9.8 19.9 36.1	67.4 14.8 19.4 43.2	84.7 27.9 22.9 54.6	orlraw10P TOX-171 CLL-SUB-111 Average	45.7 54.7 62.3 63.9	91.6 65.5 58.1 81.0	92.9 56.9 81.9 84.7	 67.1 71 54.1 57 59.5 66 65.2 72 	.7 9 .2 6 .3 6 .5 8	6.9 3.5 6.0 5.2
Clus	stering res	sults (.	ACC)		0.4 0.3 22 0.2 0.1 0.1 0 10*(-6) 10*(-6)			Cluster	ing resi	<i>ults</i> (<i>N</i>	MI)			150 NW	Classif	Fication	n rates	5(96)	150	
ACC($\lambda_1 = 0.00$	# of Feature				ло 100 10^4 10 л1	$C(\lambda_0=0.001)$				100 10~4 10~6 NM	$I(\lambda_1 :$	# of Featur = 0.001	•	100 >1	NMI(λ	$_{0} = 0$	# of Feature		

-0.001) $\pi CC(n_1)$

MRSR achieves the best performance in terms of clustering accuracy, NMI and classification accuracy among all the competing methods. Besides, we also investigate the sensitiveness of the parameters of MRSR. The experiment result indicates that our method is not very sensitive to the number of the features. Furthermore, the performance of MRSR is also not very sensitive to parameters λ_0 and λ_1 .

F.; Hassibi, B.; Yang, Y.; Jafari, A.; Almasganj, F.; Ding, C.; Cai, D.; Zhao, Z.; Luo, J.; Tao, H.; Huang, Z.; Zhuang, Y.; Zha Y.; Shen, T.;

UNSUPERVISED FEATURE SELECTION BY MANIFOLD REGULARIZED SELF-REPRESENTATION

Siqi Liang¹, Qian Xu², Pengfei Zhu², Qinghua Hu², Chongqing Zhang² ¹School of Mathematical Sciences, Nankai University, Tianjin, China ²School of Computer Science and Technology, Tianjin University, Tianjin, China

In order to avoid the overflow error, a sufficiently small value ϵ is introduced by defining by $g_{i,i}^t = 1/\max(||x_i - x_i W^t||_2, \epsilon)$ and

MRSR

In RSR, data matrix X is used as the response matrix, and each feature can be represented by all the features with different representation coefficients. However, RSR did not take the structure information of unlabeled data into consideration. Motivated by the manifold learning, we further incorporate a manifold regularization term to preserve data similarity. According to the discussion above, now we have the following minimization problem:

 $\widehat{W} = \arg\min \|X - XW\|_{2,1} + \lambda_0 tr(W^T X^T L X W) + \lambda_1 \|W\|_{2,1}$

We call the above model Manifold Regularized Self-Representation (MRSR) for unsupervised feature selection.

A data matrix with outliers and redundant features. (a) Corrupted data matrix (b) Redundant features and (c) Outliers.

Dataset Summary

In this paper, we use six real-world datasets for extensive experiments. We use six real-world datasets for extensive experiments. There are 4 face image datasets (i.e., warpPIE10P, warpAR10P, pixraw10p, orlraws10P) and 2 microarray datasets (i.e., TOX-171 and CLL-SUB-111).

Datasets	Instances	s Features (Classes	Domains
warpPIE10P	210	2420	10	Image, Face
warpAR10P	130	2400	10	Image, Face
pixraw10P	100	10000	10	Image, Face
orlraw10P	100	10304	10	Image, Face
TOX-171	171	5748	4	Microarray, Bio
CLL-SUB-111	111	11340	3	Microarray, Bio

Parameter Setting

- We fix k = 5 for all the datasets to specify the neighborhood size.
- We tune the bandwidth and two regularization parameters from $\{10^{-6}, 10^{-5}, 10^{-4}, \dots, 10^{5}, 10^{6}\}$ and record the best result.
- dimensions.
- with different random initializations. The average results are reported for all the comparing algorithms.

Conclusion

In this paper, we proposed a manifold regularized self-representation (MRSR) model for unsupervised feature selection. The L2,1-norm is used to measure the self-representation residual to alleviate the impact of the outliers. The representation coefficients are also regularized by the L2,1-norm sparsity to select effective features. To maintain the sample similarity of the raw space in the reconstructed space, a manifold regularization is imposed on reconstructed samples. As a result, the most representative features which can reconstruct other features and preserve locality are selected. The experiment results validated the effectiveness of MRSR in terms of both the clustering and classification performances. In the future, we will extend MRSR tasks to multi-view or classification problems.

For feature dimension, we set the number of features as $\{10, 20, 30, \dots, 150\}$ and report the average results over different

• The K-means clustering algorithm is performed on the selected features by different algorithms. The experiment is run for 20 times