A Directed Graph Approach to Active Contours

Adrian Barbu Associate Professor Department of Statistics Florida State University

Overview

- Active Contours
 - Chan-Vese
- Related Work
- Proposed method
- Experiments:
 - Horse Segmentation
 - Liver Segmentation
- Conclusion and future work

Active Contour Energy

Energy for a curve
$$c: [a, b] \to R^2$$

$$E(c) = \int_a^b \left[E_{data}(c(t)) + E_{smo}(c(t)) \right] dt$$

- Data term E_{data} encourages high gradient locations
- Smoothness term E_{smo} encourages smooth curves
- Minimization is difficult because of self-intersections

Level set representation

- The closed curve is the 0-level set of a surface S
- Extend the energy to E(S)
- Evolve S instead of c

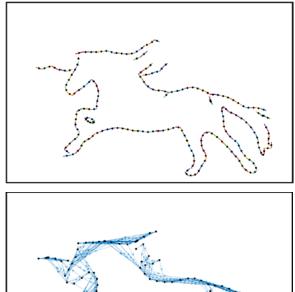
The Chan-Vese Algorithm

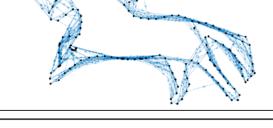
Energy for a curve C: $[a, b] \rightarrow R^2$ $E(C, \mu_1, \mu_2) = \int_{inside C} (I(x, y) - \mu_1)^2 dx dy + \int_{outside C} (I(x, y) - \mu_2)^2 dx dy + \mu \cdot len(C)$

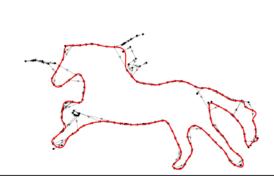
- Uses intensity information from the whole image
 Pros:
 - Less dependent on initialization
 - Robust to noise
 - Generalizes to 3D and beyond
 - Cons:
 - Computationally expensive

Overview of Proposed Approach

- Minimize Active Contour Energy
 Additive energy representation
- Construct a directed graph
 - Graph nodes = edge segments
 - Graph edges = smooth curves
 - Edge weights = partial AC energies
- Use graph optimization
 - Floyd-Warshall all-pairs shortest path
 - Obtain closed paths = segmentations







Related Work

- Minimum path algorithm for active contours (Kohen and Kimmel '97)
 - Still used level sets for optimization
 - Graph optimization (Barbu et al 2007)
 - Undirected graph
 - Open curves, no segmentation
 - Linear model (Schoeneman et al, 2012)
 - Region based representation with 8/16 triangles for each pixel
 - Directed edges for interior/exterior
 - Curvature regularization
 - Optimization by linear programming

Additive Active Contour Energy

- Active contour energy depends on curve parameterization
 Want energy additive to curve concatenation
 - Use arc length parameterization

c: $[0, l] \to R^2, ||c'(t)|| = 1$

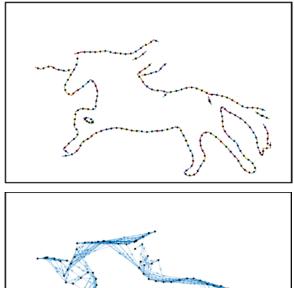
Then if $c_1: [0, l_1] \to R^2$, $c_2: [0, l_2] \to R^2$ have arc length parametrization and $c: [0, l_1 + l_2] \to R^2$ is their concatenation we have

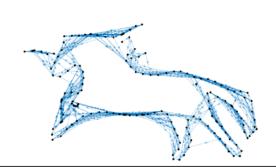
$$E(c) = E(c_1) + E(c_2)$$

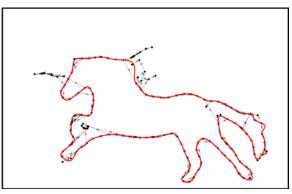
• Obtain curve energy for $c: [a, b] \to R^2$ $E(c) = \int_a^b \left[E_{data}(c(t)) + E_{smo}(c(t)) \right] ||c'(t)|| dt$

Overview of Proposed Approach

- Minimize Active Contour Energy
 Additive energy representation
- Construct a directed graph
 - Graph nodes = edge segments
 - Graph edges = smooth curves
 - Edge weights = partial AC energies
- Use graph optimization
 - Floyd-Warshall all-pairs shortest path
 - Obtain closed paths = segmentations

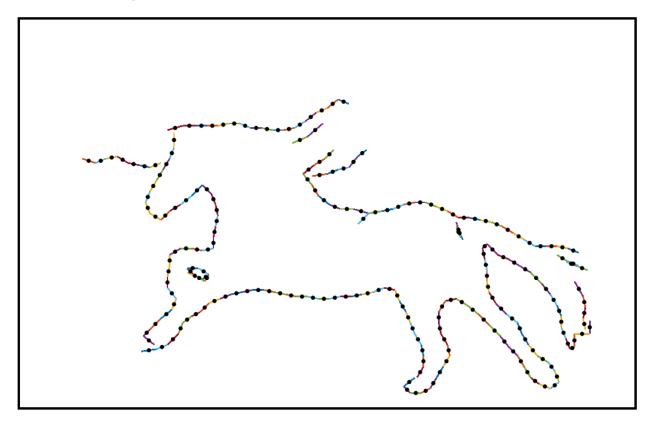




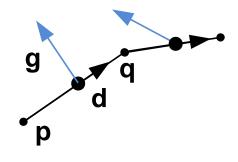


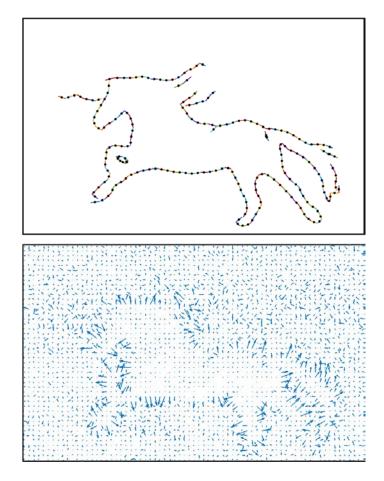
Graph nodes:

- Edge detection + linking
- Cut into short segments
- Segment centers = nodes



- Need a gradient field for orientation
 - Image gradient or
 - Gradient of distance transform

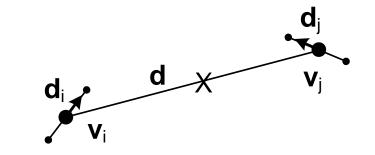


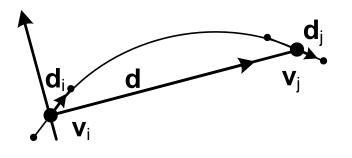


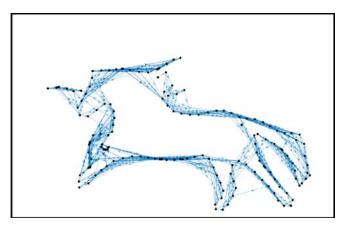
- Segment (node) orientation
 - Left hand rule
 - Gradient field is to the left of the segment

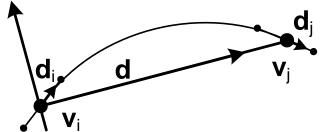
- Graph edges:
 - Segments up to a max distance
 - No edge between segments with incompatible directions
 - Edge direction = direction of segments
 - Construct smooth curve between segments as degree 3 polynomial
 - Remove edge if curve is too long

Edge weight = curve energy
$$E(c) = \int_{a}^{b} \left[E_{data}(c(t)) + E_{smo}(c(t)) \right] ||c'(t)|| dt$$





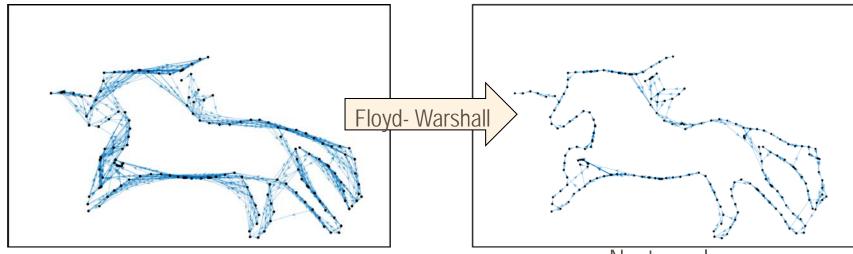




Graph edge weight = curve energy $E(c) = \int_{a}^{b} \left[E_{data}(c(t)) + E_{smo}(c(t)) \right] ||c'(t)|| dt$

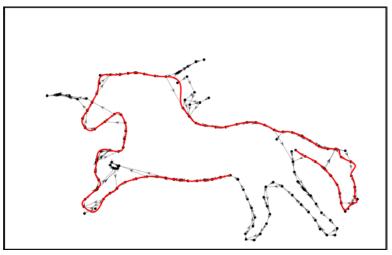
Use curvature as smoothness: $E_{smo}(c(t)) = |\kappa(c(t))| = \frac{|x'y-y'x|}{(x'^2+y'^2)^{3/2}}$

Directed Graph Optimization



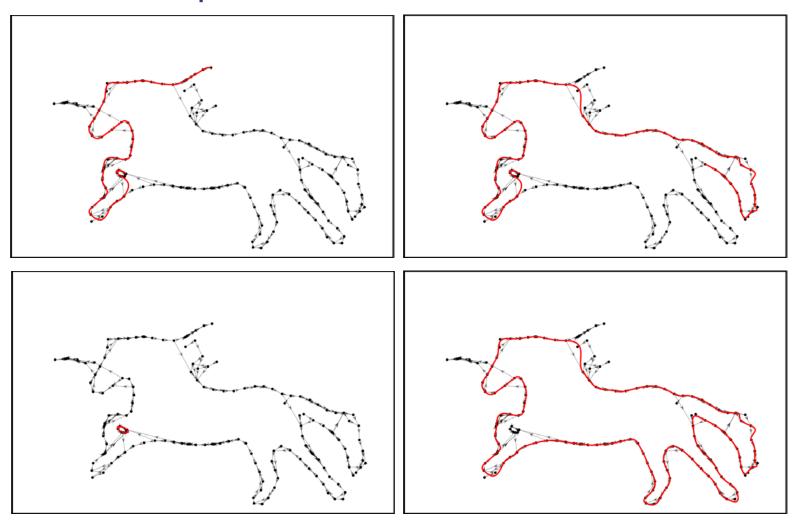
Next graph

- Use the Floyd-Warshall all-pair shortest path algorithm.
- Obtain
 - *C_{ij}* minimum cost of the path from node i to j
 - N_{ij} the next node of the minimum cost path = "Next" graph



One minimum cost path

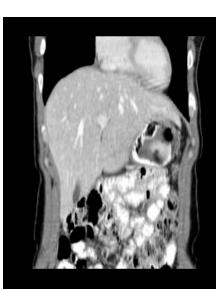
Open and Closed Curves

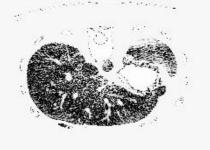


Positive additive costs prefer shorter curvesNormalize costs by the curve length

Datasets

- Weizmann Horse dataset
 - 328 horse images
 - Size about 300x200 pixels
 - Manual segmentations
- Liver dataset
 - 17 CT volumes
 - Manual liver segmentations
 - 11 slices each volume
 - Resized to 256x256
 - Total 187 images
 - Preprocessing:
 - CNN detection of rough liver
 - Intensity histogram
 - Liver intensity likelihood





After preprocessing

Quantitative Evaluation

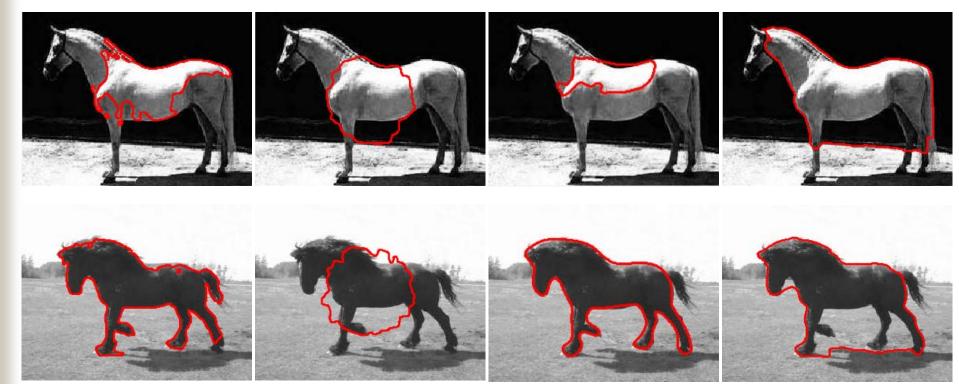
Methods:

- Chan-Vese (Chan & Vese 2001)
- Geodesic Active Contours (Caselles et al, 1997)
- Ours using image gradient for edge directions
- Ours using DT gradient for edge directions

Method	Horses	Time(s)	Livers	Time(s)
Initialization	51.49	-	83.40	_
Geodesic Active Contours	51.53	0.70	88.64	0.87
Chan-Vese	68.22	0.50	90.22	0.45
Ours w/ Image Gradient	46.76	0.59	89.46	0.03
Ours w/DT Gradient	61.81	0.70	89.99	0.02

Examples-Horses

Here distance transform (DT) is from the center pixel.



Chan-Vese Geodesic Active Contours

Ours with image gradient

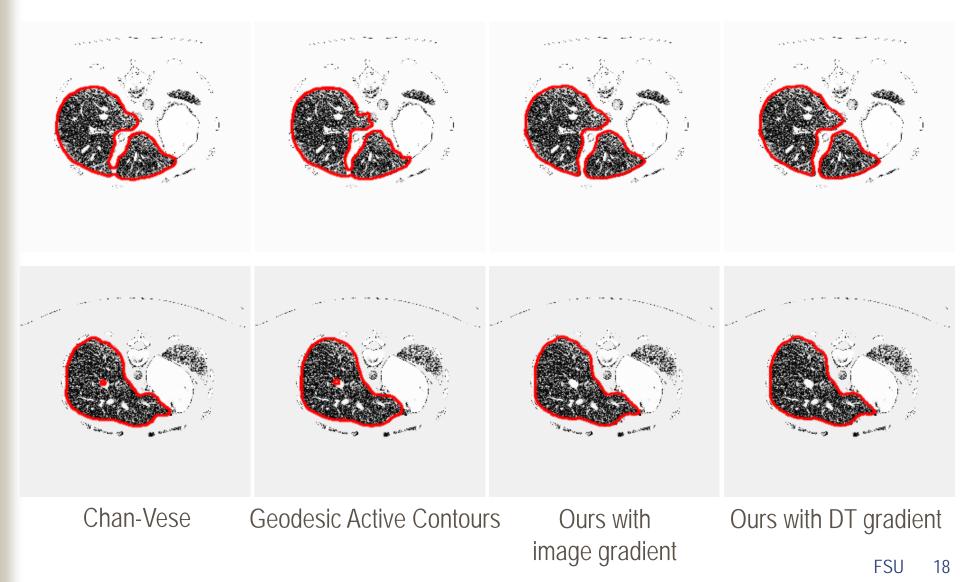
Ours with DT gradient

FSU

17

Examples-Livers

DT is from a rough liver segmentation obtained by CNN



Conclusions

- A segmentation method for Active Contours
 - Additive AC energy using the arc length parametrization
 - Pieces of curves obtained as smooth polynomials
 - Directed curves to specify where the inside is.
 - Graph optimization for obtaining the result
- Pros:
 - Can impose constraints on the result
 - maximum curvature, min length, number of connected components, etc.
 - Unified treatment of open and closed curves
 - Partial segmentations
 - Does not depend on initialization
- Cons:
 - Hard to generalize to 3D