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Active Contour Energy
 Energy for a curve 𝑐𝑐: 𝑎𝑎, 𝑏𝑏 → 𝑅𝑅2

𝐸𝐸 𝑐𝑐 = �
𝑎𝑎

𝑏𝑏
𝐸𝐸𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 𝑐𝑐 𝑡𝑡 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡

 Data term 𝐸𝐸𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 encourages high gradient locations
 Smoothness term 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 encourages smooth curves

 Minimization is difficult because of self-intersections
 Level set representation

 The closed curve is the 0-level set of a surface S
 Extend the energy to E(S)
 Evolve S instead of c

FSU 3



The Chan-Vese Algorithm
 Energy for a curve C: 𝑎𝑎, 𝑏𝑏 → 𝑅𝑅2

𝐸𝐸 𝐶𝐶, 𝜇𝜇1,𝜇𝜇2 = �
𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛 𝐶𝐶

𝐼𝐼 𝑥𝑥,𝑦𝑦 − 𝜇𝜇1 2𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +

�
𝑠𝑠𝑜𝑜𝑑𝑑𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛 𝐶𝐶

𝐼𝐼 𝑥𝑥,𝑦𝑦 − 𝜇𝜇2 2𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 + 𝜇𝜇 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶)

 Uses intensity information from the whole image
 Pros:

 Less dependent on initialization
 Robust to noise
 Generalizes to 3D and beyond

 Cons:
 Computationally expensive
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Overview of Proposed Approach
 Minimize Active Contour Energy

 Additive  energy representation

 Construct a directed graph
 Graph nodes = edge segments 
 Graph edges = smooth curves
 Edge weights = partial AC energies

 Use graph optimization
 Floyd-Warshall all-pairs shortest path
 Obtain closed paths = segmentations
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Related Work
 Minimum path algorithm for active contours (Kohen and 

Kimmel ’97)
 Still used level sets for optimization

 Graph optimization (Barbu et al 2007)
 Undirected graph
 Open curves, no segmentation

 Linear model (Schoeneman et al, 2012)
 Region based representation with 8/16 triangles for each pixel

 Directed edges for interior/exterior
 Curvature regularization
 Optimization by linear programming
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Additive Active Contour Energy
 Active contour energy depends on curve parameterization
 Want energy additive to curve concatenation

 Use arc length parameterization 
c: 0, 𝑙𝑙 → 𝑅𝑅2, |𝑐𝑐′ 𝑡𝑡 | = 1

 Then if 𝑐𝑐1: 0, 𝑙𝑙1 → 𝑅𝑅2, 𝑐𝑐2: 0, 𝑙𝑙2 → 𝑅𝑅2 have arc length 
parametrization and c: 0, 𝑙𝑙1 + 𝑙𝑙2 → 𝑅𝑅2 is their concatenation 
we have 

𝐸𝐸 𝑐𝑐 = 𝐸𝐸 𝑐𝑐1 + 𝐸𝐸 𝑐𝑐2
 Obtain curve energy for 𝑐𝑐: 𝑎𝑎, 𝑏𝑏 → 𝑅𝑅2

𝐸𝐸 𝑐𝑐 = �
𝑎𝑎

𝑏𝑏
𝐸𝐸𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 𝑐𝑐 𝑡𝑡 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐 𝑡𝑡 ||𝑐𝑐′(𝑡𝑡)||𝑑𝑑𝑡𝑡
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Constructing the Directed Graph
 Graph nodes:

 Edge detection + linking
 Cut into short segments
 Segment centers = nodes
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Constructing the Directed Graph
 Need a gradient field for orientation

 Image gradient or
 Gradient of distance transform

 Segment (node) orientation
 Left hand rule
 Gradient field is to the left of the segment
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Constructing the Directed Graph
 Graph edges:

 Segments up to a max distance
 No edge between segments with 

incompatible directions
 Edge direction = direction of segments
 Construct smooth curve between 

segments as degree 3 polynomial
 Remove edge if curve is too long

 Edge weight = curve energy
𝐸𝐸 𝑐𝑐 = �

𝑎𝑎

𝑏𝑏
𝐸𝐸𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 𝑐𝑐 𝑡𝑡 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐 𝑡𝑡 ||𝑐𝑐′(𝑡𝑡)||𝑑𝑑𝑡𝑡
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Constructing the Directed Graph

 Graph edge weight = curve energy
𝐸𝐸 𝑐𝑐 = �

𝑎𝑎

𝑏𝑏
𝐸𝐸𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 𝑐𝑐 𝑡𝑡 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐 𝑡𝑡 ||𝑐𝑐′(𝑡𝑡)||𝑑𝑑𝑡𝑡

 Use curvature as smoothness:
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐 𝑡𝑡 = 𝜅𝜅 𝑐𝑐 𝑡𝑡 =

|𝑥𝑥′𝑦𝑦−y′x|
𝑥𝑥′2 + 𝑦𝑦′2 3/2
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Directed Graph Optimization

 Use the Floyd-Warshall all-pair 
shortest path algorithm.

 Obtain 
 𝐶𝐶𝑖𝑖𝑖𝑖 - minimum cost of the path from 

node i to j
 𝑁𝑁𝑖𝑖𝑖𝑖 - the next node of the minimum 

cost path = “Next” graph
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Floyd- Warshall

Next graph

One minimum cost path



Open and Closed Curves

 Positive additive costs prefer shorter curves
 Normalize costs by the curve length
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Datasets
 Weizmann Horse dataset

 328 horse images
 Size about 300x200 pixels
 Manual segmentations

 Liver dataset
 17 CT volumes
 Manual liver segmentations
 11 slices each volume

 Resized to 256x256
 Total 187 images

 Preprocessing:
 CNN detection of rough liver
 Intensity histogram
 Liver intensity likelihood CT slice After preprocessing



Quantitative Evaluation
 Methods:

 Chan-Vese (Chan & Vese 2001)
 Geodesic Active Contours (Caselles et al, 1997)
 Ours using image gradient for edge directions
 Ours using DT gradient for edge directions
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Examples-Horses
 Here distance transform (DT) is from the center pixel.
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Chan-Vese Geodesic Active Contours Ours with
image gradient

Ours with DT gradient



Examples-Livers
 DT is from a rough liver segmentation obtained by CNN
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Chan-Vese Geodesic Active Contours Ours with
image gradient

Ours with DT gradient
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Conclusions
 A segmentation method for Active Contours

 Additive AC energy using the arc length parametrization
 Pieces of curves obtained as smooth polynomials
 Directed curves to specify where the inside is.
 Graph optimization for obtaining the result

 Pros:
 Can impose constraints on the result 

 maximum curvature, min length, number of connected components, etc.
 Unified treatment of open and closed curves

 Partial segmentations
 Does not depend on initialization

 Cons:
 Hard to generalize to 3D
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