

TEMPORAL ACTION LOCALIZATION WITH TWO-STREAM SEGMENT-BASED RNN

ICIP 2017

IEEE International Conference on Image Processing

Tianwei Lin, Xu Zhao*, Zhaoxuan Fan Department of Automation, Shanghai Jiao Tong University, China

Introduction

Temporal action localization

- Task: localize action instances in long untrimmed videos and classify their categories
- > Challenges
- Videos to be analyzed are usually long and untrimmed
- A video may contains multiple action instances with different categories

Our main contributions

- ➤ Propose a two-stream segment-based recurrent neural network (TSS-RNN) framework for temporal action localization task
- ➤ Propose a temporal segment proposal method combining multi-scale sliding window and temporal selective search
- ➤ Reach state-of-the-art performance in THUMOS'14 dataset

Proposed Approach

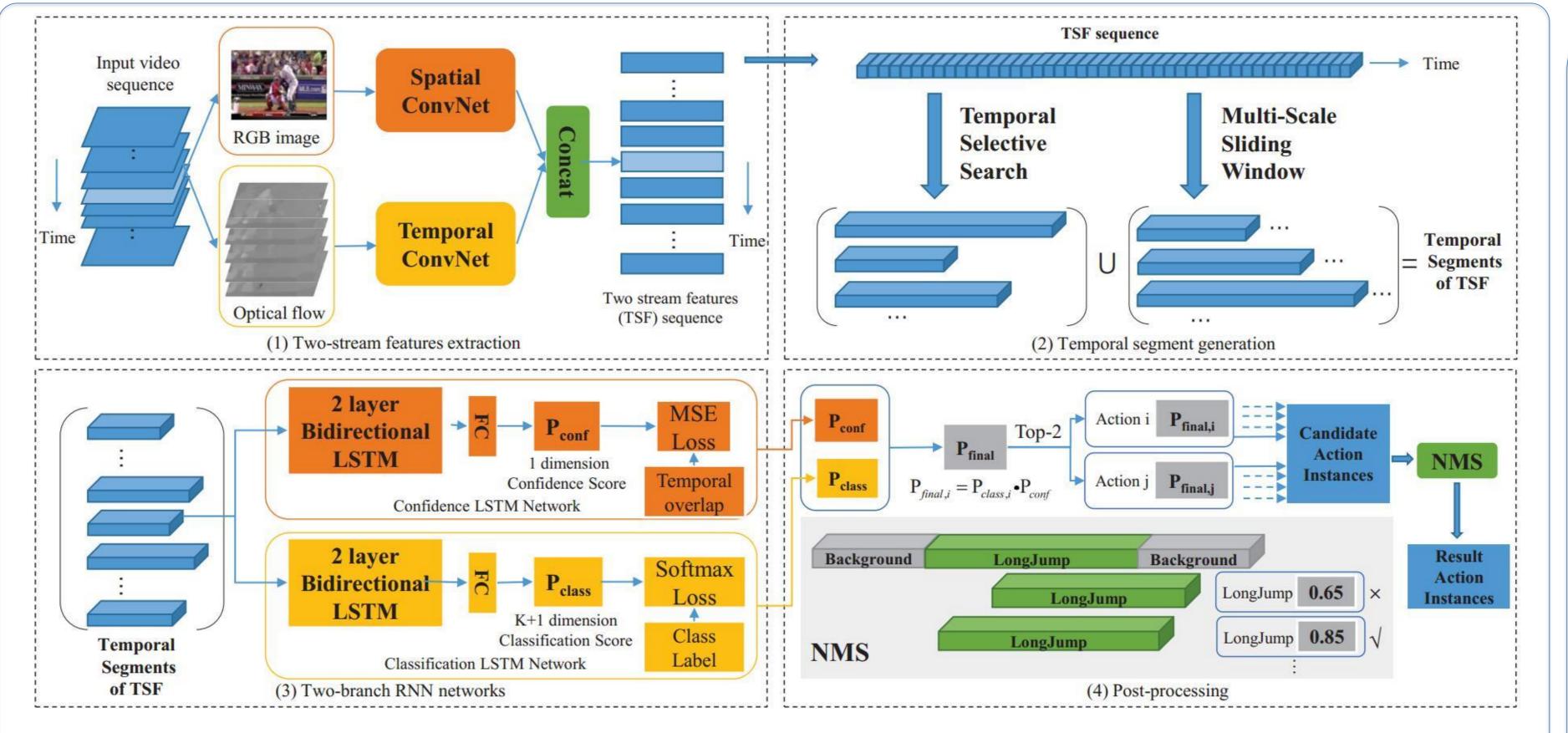
Framework of TSS-RNN

(1) Two-stream features extraction

- FC8 layer outputs of two stream networks are concatenated as Two-Stream Feature (TSF)
- Spatial network extracts appearance feature
- Temporal network extracts motion feature

(2) Temporal segment generation

- Temporal selective search generate segments by merging minisegments continually based on Manhattan distance
- Temporal selective search and multi-scale sliding window are combined to generate temporal segments

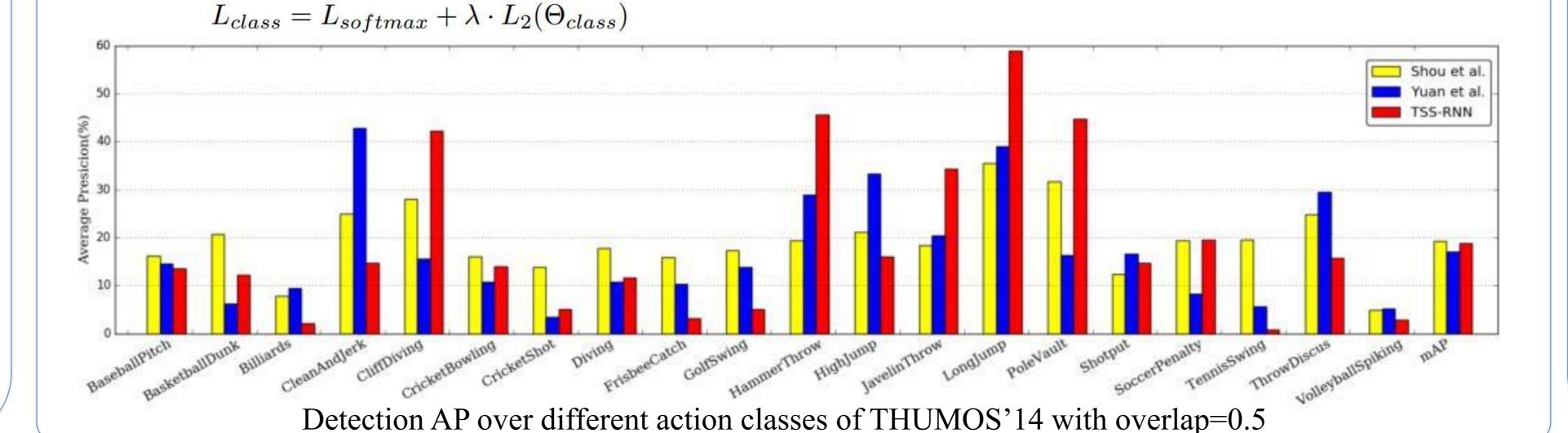


(3) Two-branch RNN networks

- Both branches adopt bi-directional 2-layers LSTM
- Confidence network is trained for the IoU score regression

$$L_{conf} = \frac{1}{N} \sum_{1}^{N} (y_{pred} - y_u)^2 + \lambda \cdot L_2(\Theta_{conf})$$

• Classification network is trained for classifying action category



(4) Post-Processing

- Combine classification and confidence score $P_{final} = P_{class} \cdot P_{conf}$
- Non-maximum suppression (NMS) is used for removing redundant detections

Experiments

Comparison of our approach with state-of the art on THUMOS '14 with variable IoU threshold (mAP %)

heta	0.5	0.4	0.3	0.2	0.1
Wang et al. [7]	8.5	12.1	14.6	17.8	19.2
Oneata et al. [5]	15.0	21.8	28.8	36.2	39.8
Yeung et al. [13]	17.1	26.4	36.0	44.0	48.9
Yuan et al. [6]	18.8	26.1	33.6	42.6	51.4
Shou et al. [9]	19.0	28.7	36.3	43.5	47.7
TSS-RNN(Ours)	18.8	28.9	36.9	42.9	46.1

Comparison between two-branch TSS-RNN and one-branch classification TSS-RNN on THUMOS'14.

Networks	$mAP (\theta = 0.5)$		
TSS-RNN(w/o confidence network)	9.8		
TSS-RNN	18.8		

Comparisons between different components of our temporal segment generation method on THUMOS'14.

Method	$mAP (\theta = 0.5)$		
Temporal Selective Search	14.3		
Multi-Scale Sliding Window	17.8		
Combined two methods	18.8		

Conclusions

- The two-branch TSS-RNN architecture we proposed shows great performance in THUMOS'14 dataset
- The quality of temporal segment proposals have a great impact on the accuracy of temporal action localization

Recent Works

- ➤ We won the first place in both Temporal Action Proposal task and Temporal Action Localization task of ActivityNet Large Scale Activity Recognition Challenge 2017!
- ➤ Tianwei Lin, Xu Zhao, Zheng Shou. Single Shot Temporal Action Detection. ACM International Conference on Multimedia (ACMMM). Mountain View, U.S., 2017.