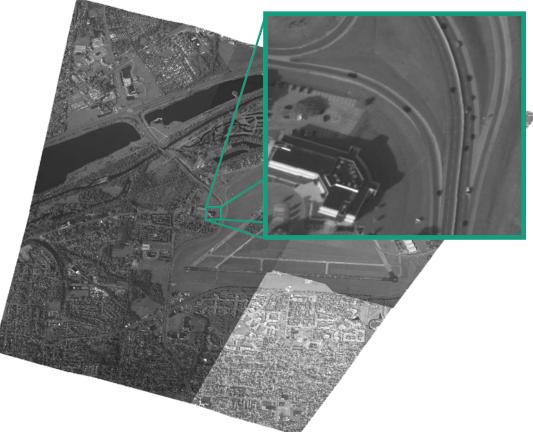
Persistent Multiple Hypothesis Tracking for Wide Area Motion Imagery

ICIP 2017: IEEE International Conference on Image Processing Beijing, China September 19th 2017

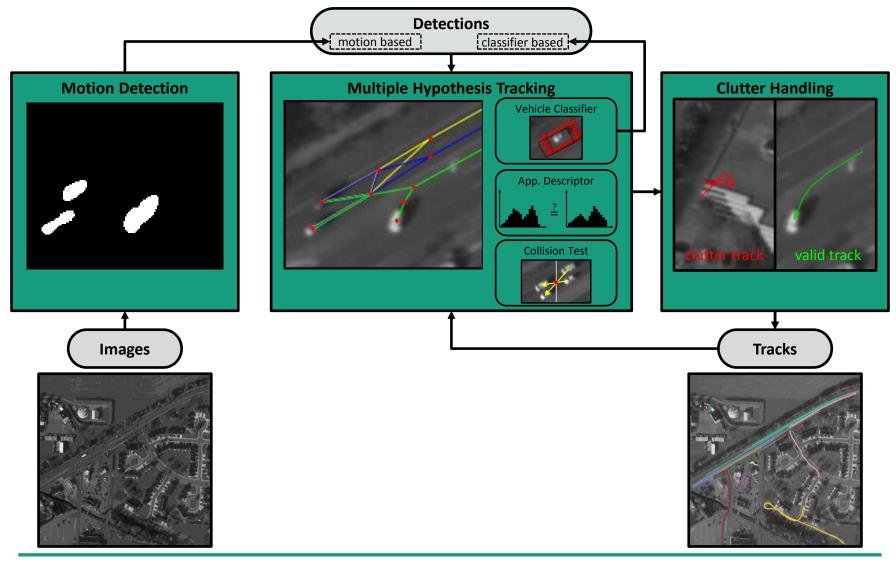
Raphael Spraul, Christine Hartung, Tobias Schuchert email: *raphael.spraul@iosb.fraunhofer.de*



IOSB

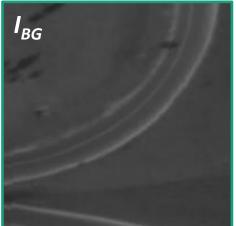
© Fraunhofer IOSB

Motivation


- Tens of square kilometers ground coverage
- Image size ~ 23,000 x 30,000 pixel
- Framerate 1 2 Hz
- Vehicle size 10 x 20 pixel
- Persistent tracking aims at continuously tracking vehicles even if a stop occurs

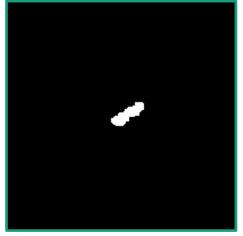
[1] U.S. Air Force Research Laboratory: WPAFB 2009 dataset

Framework for persistent WAMI tracking



Vehicle Detection

- Motion-based vehicle detection
- Median background subtraction approach
- Neighborhood consideration
- Yields best results according to [2]



$$D_k(x,y) = \min_{(\Delta x,\Delta y) \in N} |I_k(x,y) - I_{BG}(x + \Delta x, y + \Delta y)|$$

- Quantile thresholding
- Morphological operations

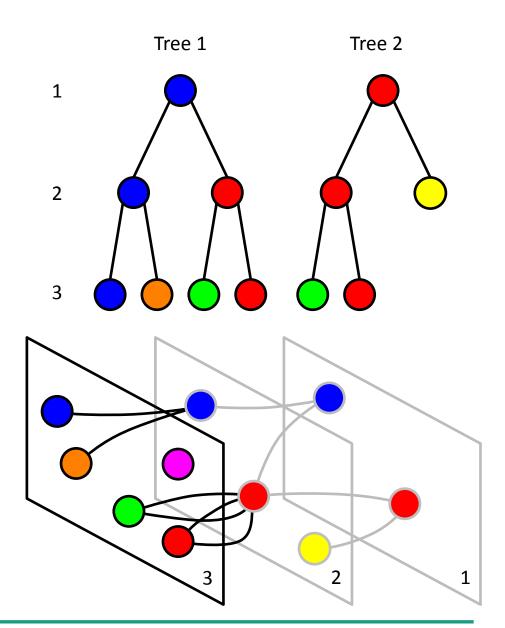
[2] Sommer *et al.*: A survey on moving object detection for wide area motion imagery (WACVW, 2016)

D_k after quantile thresholding

D_k after morphological operations

September 19th 2017 © Fraunhofer IOSB Raphael Spraul

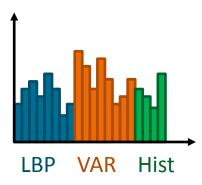
4


Multiple Hypothesis Tracking

- Data association with "trackoriented" MHT approach
- Track motion estimation with Kalman filter
- Motion model: constant velocity and turn rate
- Combined track score update

$$\Delta S_u(k) = \Delta S_{mot}(k) + \Delta S_{app}(k)$$

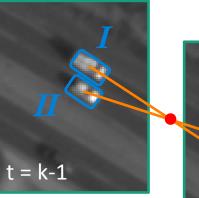
Motion score by Kalman filter

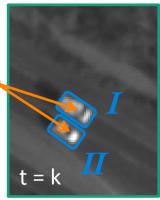

Appearance score by appearance descriptor

Appearance Descriptor

- Appearance Descriptor for calculating appearance scores for different track hypotheses
- Combination of
 - Local Binary Patterns (LBP)
 - Local Variance (VAR)
 - Brightness histogram (Hist)

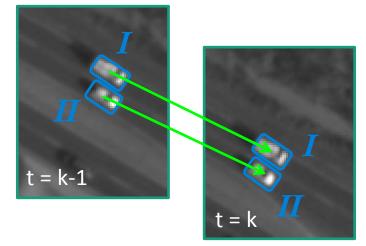
Hellinger distance between histograms to determine vehicle similarity





Vehicle Collision Test

- MHT produces many track hypotheses
- Using *a-priori* knowledge to reduce number of track hypotheses improves data association process
- Intersecting hypotheses result in a vehicle collision
- Vehicle collisions are excluded in standard driving behavior


Invalid pair of track hypotheses

Collision! => Track hypotheses are in conflict!

Classifier-based Detections

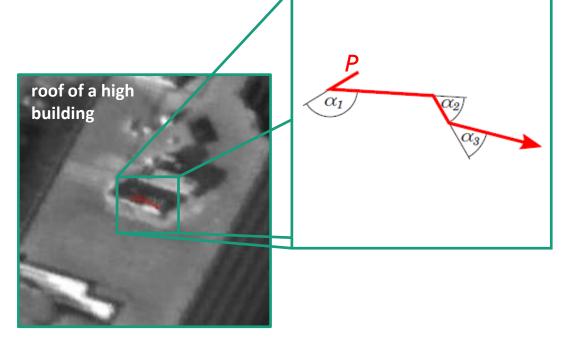
- Median background approach does not detect stopped vehicles
- Classifier-based detections used for persistent tracking approach
- Sliding window classifier (see [3])

	dfv 1.0				
and the second second	and the second second	0.0			

- Classifier-based vehicle detection if track slows down
- Reducing search space by using vehicle position and orientation from Kalman filter

[3] Teutsch et al.: Robust detection of moving vehicles in wide area motion imagery (CVPRW, 2016)

Clutter-Handling


Reducing false alarms by track validation

clutter track := non-vehicle track originated from false detections

Delete...

- … tracks with short covert total distance
- ... short tracks with a high *"*total curvature"

$$\kappa(P) = \sum_i \alpha_i$$

Experimental Results

- ROI of size 1408x1408 pixels of WPAFB 2009 dataset
- 1025 frames
- 410 ground truth tracks

Quantitative Evaluation I

Method		Literature				
Metric	Proposed	Chen [4]	Chen [5]	Prokaj [6]	Prokaj [7]	Reilly [8]
precision	0.932	0.990	0.987	0.960	0.985	0.940
recall	0.657	0.606	0.550	0.539	0.504	0.573
f-score	0.770	0.752	0.706	0.690	0.667	0.712
N-MODA	0.609	0.600	0.543	0.516	0.497	0.536
S/T	0.373	0.015	0.200	0.237	0.249	0.851
В/Т	1.005	0.317	0.500	1.022	1.515	1.293
ΜΟΤΑ	0.602	0.599	0.540	0.512	0.493	0.522

N-MODA = Normalized Multiple Object Detection Accuracy MOTA = Multiple Object Tracking Accuracy S/T = Switches per Track B/T = Breaks per Track

[4] Chen et al.: Exploring Local Context for Multi-target Tracking in Wide Area Aerial Surveillance (WACV, 2017)

[5] Chen et al.: Motion Propagation Detection Association for Multi-target Tracking in Wide Area Aerial Surveillance (AVSS, 2015)

[6] Prokaj *et al.*: Persistent Tracking for Wide Area Aerial Surveillance (CVPR, 2014)

[7] Prokaj et al.: Inferring tracklets for multi-object tracking (CVPRW, 2011)

[8] Reilly et al.: Detection and Tracking of Large Number of Targets in Wide Area Surveillance (ECCV, 2010)

Quantitative Evaluation II

Test case Component	T ₁	T ₂	T ₃	T ₄	T 5
Appearance descriptor	•	-	•	•	+
Vehicle collision test	+	+	-	+	+
Classifier based detections	•	•	•	-	•
Clutter handling	+	+	•	•	-
ΜΟΤΑ	0.602	0.565	0.582	0.543	0.289

Qualitative Evaluation

Conclusion and Outlook

Novel MHT framework for persistent multi-target tracking in WAMI data that recovers missing detections with a classifier

Extensions

- Appearance descriptor that assesses vehicle similarities
- Vehicle collision test for discarding wrong data associations
- Clutter-handling to reject tracks caused by false detections
- Outlook: Integrate split and merge handling

Thank you for your attention!

