

COMPRESSED-DOMAIN VIDEO CLASSIFICATION WITH DEEP NEURAL NETWORKS: "THERE'S WAY TOO MUCH INFORMATION TO DECODE THE MATRIX"

Aaron Chadha, Alhabib Abbas, Yiannis Andreopoulos

Engineering and Physical Sciences Research Council

Background: Action recognition

- Action recognition: Image sequences -> Actions
- Before deep learning dense trajectories using optical flow:

Background: Action Recognition

State-of-the-art deep learning methods:

Common Issues

- RGB frame inputs require full video decoding
- Optical flow is expensive to compute (per-pixel)
- LSTMs are notoriously slow to train
- 3D CNN on (large) RGB frames requires heavy processing
- Short temporal extent of inputs -> only looking at local motion cues and not long term dependencies
- Redundancy between consecutive frames

Our Proposal

- We would like to use the video codec directly as a *spatio-temporal sensor*
- We propose a 3D convolutional neural network that directly ingests motion vector flow extracted from the encoder bitstream

3D-CNN Input

• Macroblock (MB) bitstream representation from codec:

| ADDR | TYPE | QUANT | VECTOR | CBP | b0 | b1 | ... b5 |

- Addr: Block address in image
- Type: Intra(I), inter (P), or bi-directional inter (B) frames
- Vector: Motion vector

3D-CNN Input

- Only ingest P-frames
- 8 x 8 macroblock size (equates to 40 x 30 MV frame representations on UCF-101)
- 2 channels, δx and δy
- Low spatial resolution -> longer temporal extent
- CNN input is 4D: 24 x 24 x 2 x 160 resolution

3D-CNN Architecture

• 3D CNN (F = filter, S = stride, D = depth):

Experimental Evaluation

• Visual comparison of inputs (MPI-Sintel):

Visual quality measured in terms of EPE (lower is better)

Input	Runtime J Decoding	per frame (ms) Flow Estimation	% P	% NZ	EPE
Proposed	0	0.16 (CPU)	62	21	15.26
Brox	3.08 (CPU)	6270 (GPU)	_	_	6.32
FlowNet2	3.08 (CPU)	123 (GPU)	-	-	3.14

 Proposed MV flow is over 4 times faster than Brox to compute

Experimental Evaluation

• We measure classification performance on UCF-101 and HMDB-51 datasets:

UCF-101: 13k videos, 101 classes, 320 x 240 resolution, 25 FPS

HMDB-51: 7k videos, 51 classes, 320 x 240 resolution, 30 FPS

Experimental Evaluation

• Accuracy compared to state-of-the-art:

Framework	Input Size	Complexity #A, #W ($\times 10^6$)	Accura UCF	ncy (%) HMDB	 Ours: 3105 FPS 29.4M 	
Proposed	$24^2 \times 2 \times 160$	4.0, 29.4	77.5	49.5	weights	
SSCNN-Brox SSCNN+	$224^2 \times 20$ $224^2 \times 3$	2.0, 90.6 2.0, 90.6	83.7 73.0	54.6 40.5	Best acc.:	
LTC-Brox LTC-Mpegflow	$58^2 \times 2 \times 100$ $58^2 \times 2 \times 60$	42.1, 12.2 25.3, 10.6	82.6 63.8*	56.7 -	 185 FPS 90.6M weights 	
SFCNN+	$170^2 \times 3 \times 10$	1.80, 26.7	65.4	_	- 0	
C3D+	$112^2 \times 3 \times 16$	30.2, 63.7	82.3	_	_	

Conclusions

- MV flow extraction (P-frames only) is up to 4 orders of magnitude faster than optical flow variants
- Low spatial resolution is counter-balanced by very long temporal extent (160 frames)
- We achieve competitive accuracy (77.5% on UCF-101) to methods using optical flow
- Lightweight 3D CNN = up to an order of magnitude faster processing than recent work
- Code available at:

https://github.com/mvcnn

Further work

• We have since extended to a two-stream architecture using selectively decoded RGB frames:

Selective decoding

Further work

Framework	Accuracy (%)		-	
	UCF	HMDB		
Proposed, $X = 10$	89.8	56.0	End-to-end cost	
Proposed, $X = 50$	88.9	54.6	(ours):	
TSCNN (avg. fusion)	86.9	58.0	\$0.228 – \$0.250	
TSCNN (SVM fusion)	88.0	59.4	End-to-end cost	
CNN-pool	88.2	_	(Zisserman et al.):	
C3D (3 nets)+IDT	90.4	_	\$11.103	
LTC	91.7	64.8		
EMV + RGB-CNN	86.4	_	Note: Cost is reporte	
IP+SVM	_	59.5	evaluation for UCF-1	
Line Pooling	88.9	62.2	AWS p2.xlarge and r3	

d on)1, using S.xlarge instance prices as appropriate