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Fig. 2: Illustration of spatial correlations
within diagonal and ‘horizontal-­and-­
vertical (HV) neighbors. The black node
is the central pixel, while blue and red
ones are diagonal and HV neighbors
respectively.

1. Piecewise Autoregressive (PAR)
model for modeling the spatial
correlations

2. Salt-and-pepper Noise Corruption
Model

where  S  is  subsampling  matrix  compensating  for  the  cross-­scale  between  x  and  y  

3. Salt-and-pepper Noise CorruptionModel

Fig.  3: Comparison  of  SNR  results  for  representative  image  ‘Lena’.  

The removal of SPN for color images is more challenging, since
conventional methods usually conduct noise removal within RGB
channels independently, leading to fake colors around sharp edges.

Assumption: High frequency of RGB color channels is highly
resemble to each other

Overall Denoising Model

① Spatial AR Correlation Term
② Inter-­RGB Term
③ Noise Corruption Constraint

① ②

③

High-­fidelity color image restoration is always of high demanding for high-­density
noise corrupted images. Such problem becomes more challenging if the degraded
image and the expected restored image are of different resolutions. Conventional
cascaded ”denoising followed by sampling” methods have some problems:

V. Conclusion

In this work, we propose a cross-­scale and cross-­RGB-­channel Salt-­and-­Pepper
Noise (SPN) removal scheme. Experiments show that the proposed algorithm
outperforms conventional cascaded methods in term of SNR.

1. They can not handle cross-­scale cases.
Blurring and color artifacts tend to be
amplified by cascaded methods.

2. They take little inter-­channel correlation
into consideration Fig. 1: Blurring and artifacts induced

by conventionalmethods

We  are  guaranteed  to  get  a  local  minimum  using  Gauss-­
Seidel  iterations.  Close-­form  solutions  for  both  steps.

X-axis represents the noise density from 0 (noise-free) to 0.9 (heavily
noisy), and Y-axis represents the SNR value of resultant image. The dark
blue curve represents the performance of proposed method, while others
are conventional cascaded methods.

Fig. 4: The performance of concerned methods. a: Original. b: Noised
and downsampled. c: EPA[1]+BI. d: MDBUTMF[2]+BI. e: EPA+SR[3]. f:
MDBUTMF+NCSR[4]. g: Proposed. SPN density=0.9, cross-­scale ratio
=×2.

Table 1: Comparisons between our algorithm (with cross-­ scale
ratio=×1) and conventional SPN removal methods.

In this paper, we propose a cross-­scale SPN removal algorithm that can
deal with arbitrary scale ratios between SPN-­corrupted image and
resultant denoised image, taking account of both intra and inter
correlations among RGB channels. Experiments show the effectiveness of
our algorithm especially for high density SPN corrupted images, when
compared to conventional cascaded approaches.
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