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Deep 
Transform 
Learning

● A new tool for Deep Learning.
● Stack one transform after another.
● Learning is done in greedy fashion.

3



Deep Representation 
Learning

1. Stacked AutoEncoder

AutoEncoder:
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Deep Representation 
Learning

1. Stacked AutoEncoder

● Nesting one AE 
inside another.

● Solved using greedy 
paradigm.

● Used generally for 
classification.

Nesting one AE into another
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Deep Representation 
Learning

1. Stacked AutoEncoder
2. Deep Belief Network

○ Undirected Graph Model.
○ Information content is 

preserved by cosine 
similarity between 
projection of data and learnt 
features.

○ Probabilistic Formulation.

Restricted Boltzmann Machine
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Deep Representation 
Learning

1. Stacked AutoEncoder
2. Deep Belief Network

Deep Belief Network: Stacking one RBM 
into another.
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Deep Representation 
Learning

1. Stacked AutoEncoder
2. Deep Belief Network
3. Deep Dictionary 

Learning

Dictionary Learning

● It learns basis for representing data.
● Columns of dictionary (Atoms) are 

connections between input and 
representation layer.

● X = D Z 
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Deep Representation 
Learning

1. Stacked AutoEncoder
2. Deep Belief Network
3. Deep Dictionary 

Learning

Deep Dictionary Learning

● Stacking one layer after another.
● Z1 =  D2 Z2 
● X= D1 Z1; X= D1 D2 Z2
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Deep Representation 
Learning

1. Stacked AutoEncoder
2. Deep Belief Network
3. Deep Dictionary 

Learning
4. Deep Transform 

Learning

Transform Learning
● While Dictionary Learning is a 

synthesis formulation, Transform 
Learning is its analysis equivalent.

● It learns an transform T such that it 
operates on the data X to generate 
the coefficients Z. 
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Deep Representation 
Learning

1. Stacked AutoEncoder
2. Deep Belief Network
3. Deep Dictionary 

Learning
4. Deep Transform 

Learning

Deep Transform Learning
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Problem 
Statement

● Given data from different classes; 
classify them accurately.

● Compare with existing techniques: 
SAE, DBN, DDL.

● Reduce train time and test feature 
generation time.
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Solution: Transform Learning

 

● But this leads to degenerate solution; trivial would be T=0, Z=0.
● So, to avoid this; new formulation becomes:

● This can be solved by alternating minimization iteratively.
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Greedy Deep 
Transform 
Learning

● Deeper representations are learnt by stacking one 
transform after another.

● The learning is done in a greedy fashion.

● By substituting,                                 and so on, till 

●
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Experimental Results:

1. Accuracy improves by 
using Deep architectures.

Datasets used: MNIST, CIFAR-10 and SVHN
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Dataset Level 1 Level 2 Level 3

MNIST 97.27 97.66 97.94

CIFAR-10 81.12 81.89 82.60

SVHN 91.97 92.68 93.00



Experimental Results:

1. Accuracy improves by 
using Deep architectures.

2. Results with Nearest 
Neighbours:

Datasets used: MNIST, CIFAR-10 and SVHN

Results with NN classifier using features from DTL:
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Dataset Proposed SDAE DBN DDL

MNIST 97.94 97.33 97.05 97.75

CIFAR-10 82.60 78.62 73.96 81.09

SVHN 93.00 91.11 88.29 92.26



Experimental Results:

1. Accuracy improves by 
using Deep architectures.

2. Results with Nearest 
Neighbours:

3. Results with SRC:

Datasets used: MNIST, CIFAR-10 and SVHN

Results with SRC classifier using features from DTL:
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Dataset Proposed SDAE DBN DDL

MNIST 98.96 98.33 98.43 98.81

CIFAR-10 85.06 79.32 75.02 83.75

SVHN 94.55 92.05 90.11 93.62



Experimental Results:

1. Accuracy improves by 
using Deep architectures.

2. Results with Nearest 
Neighbours:

3. Results with SRC:

4. Results with SVM:

Datasets used: MNIST, CIFAR-10 and SVHN

Results with SVM classifier using features from DTL:
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Dataset Proposed SDAE DBN DDL

MNIST 98.94 97.05 98.44 98.64

CIFAR-10 85.55 78.90 74.30 84.96

SVHN 95.42 92.60 89.70 93.81



Experimental Results:

1. Accuracy improves by 
using Deep architectures.

2. Results with Nearest 
Neighbours:

3. Results with SRC:

4. Results with SVM:

5. Feature generation time:

Time in seconds:

19

Mode Proposed SDAE DBN DDL

Training 25 120408 30071 107

Testing 50 61 50 79



Conclusion

● Deep Transform Learning(proposed) 
outperforms DDL, SDAE and DBN in 
terms of accuracy.

● Features generated by DTL are good 
representations because all classifiers 
KNN, SRC and SVM are able to 
accurately classify test data.

● Train and Test time is less with 
proposed technique.
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Future Work

● Incorporate stochastic regularization 
techniques into DTL framework.

● Compare regularized DTL with 
advanced regularized tools like sparse 
AutoEncoder, Contractive 
AutoEncoder, sparse DBN.

● Making supervised DTL framework.
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Questions are 
welcome.
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