Context-Aware Cascade Network for Semantic Labeling in VHR Image

Yongcheng Liu, Bin Fan, Lingfeng Wang, Jun Bai

Shiming Xiang, Chunhong Pan

National Laboratory of Pattern Recognition, CASIA

Outline

1 Introduction

2 Related work

3 CAC-NET

4 Future work

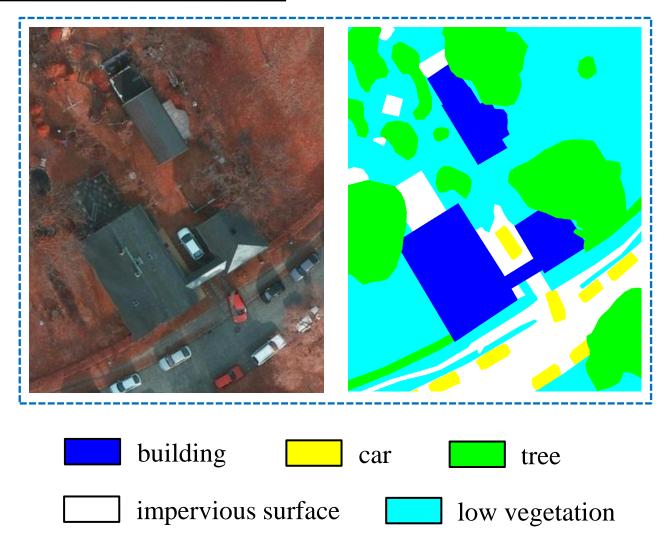
Introduction

Semantic labeling :

Assign each pixel in a given VHR image to a semantic object class

Important application :

- Infrastructure planning
- Urban change detection
- Disaster exploration



Introduction

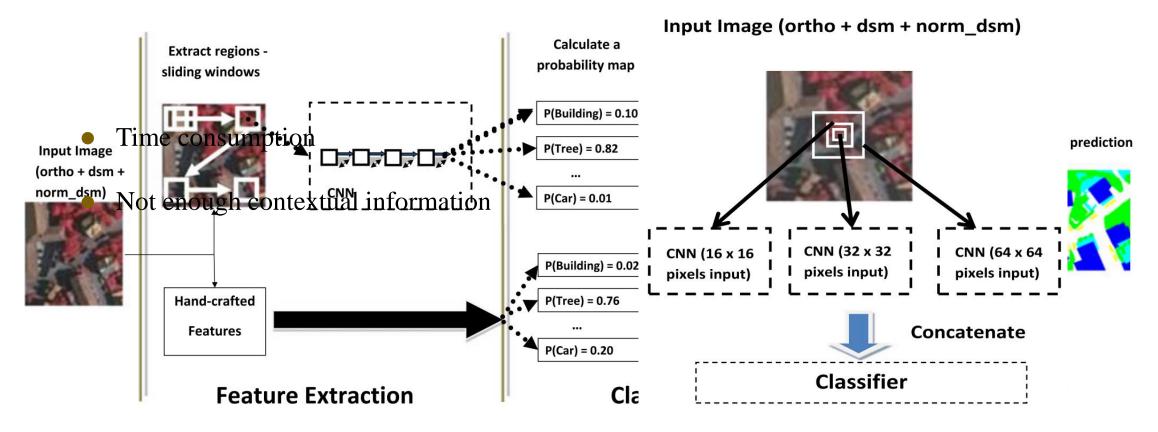
Challenges :

- (1) Complex man-made objects
- high intra-class variance
- Iow inter-class variance
- (2) Fine-structured objects
- > small or threadlike
- locate together
- occlusions and cast shadows
- (3) Additional challenge
- different solutions



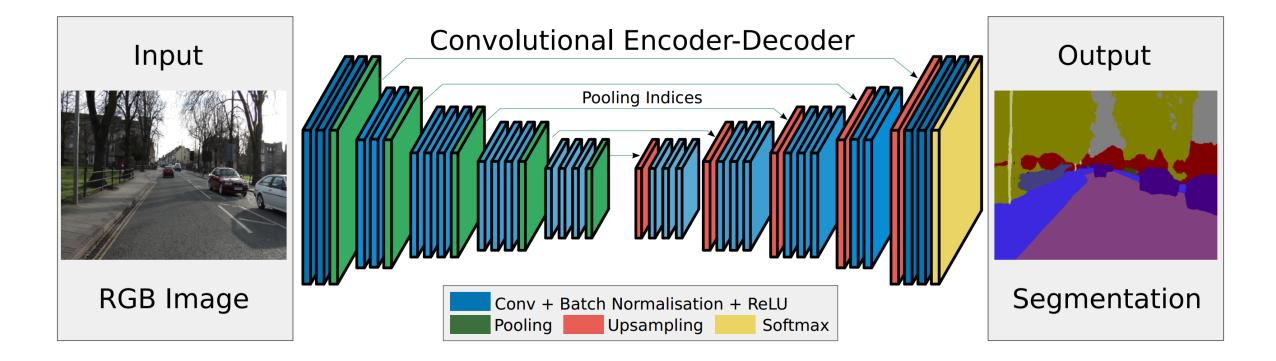
Related work

1) Patch-based methods 2016, Paisitkriangkrai et al.



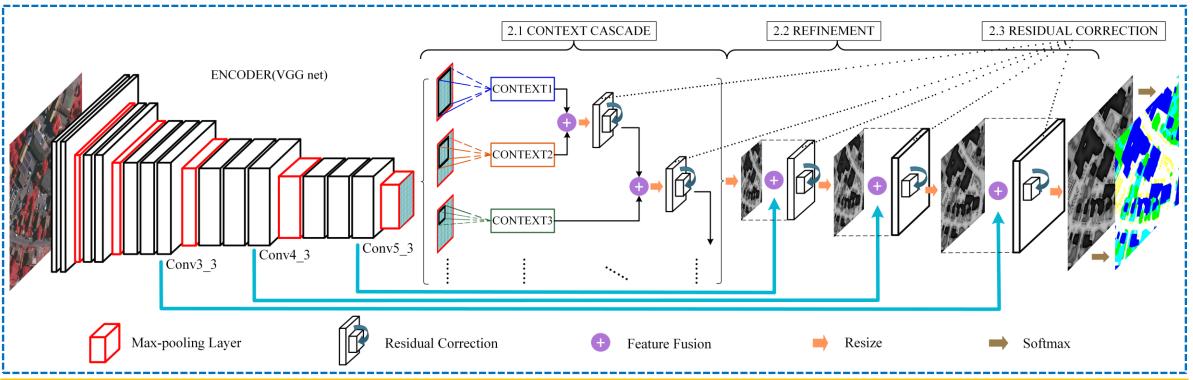
Related work

2) Fully convolutional methods 2015, Badrinarayanan et al. (Segnet)



CAC-NET

Context-Aware Cascade Network



- Encoder : extract features of different levels
- ✓ **Context Cascade**: capture contextual information for complex objects
- ✓ **Refinement**: refine the coarse labeling of fine-structured objects
- ✓ **Residual correction**: improve the fusion of different-level features

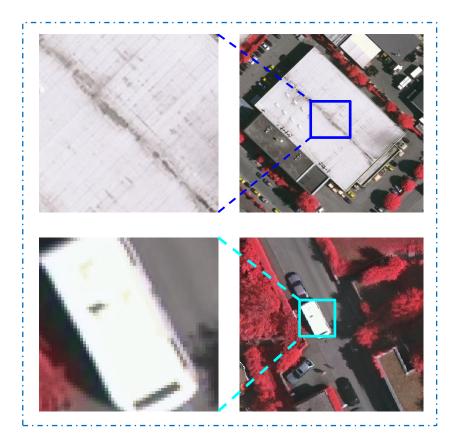
CAC-NET: context cascade

Contextual information

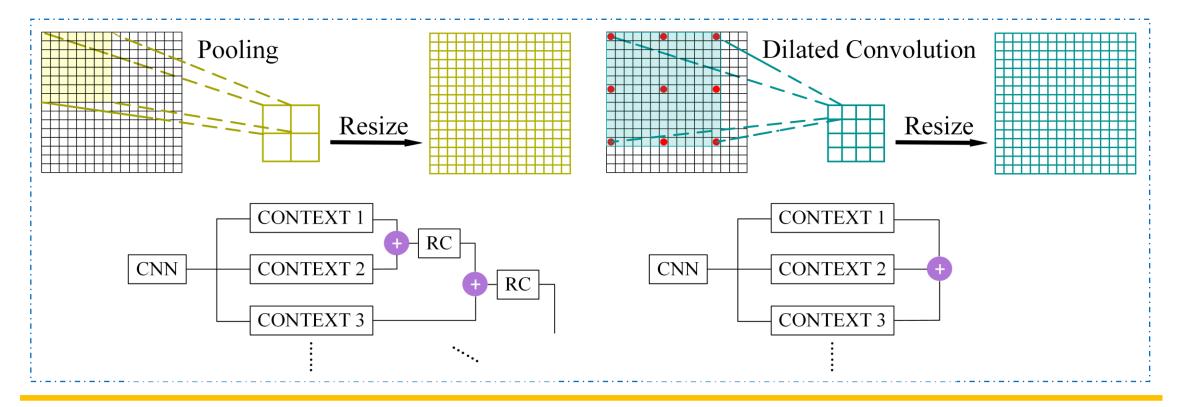
Latent dependencies between an object and its surroundings.

How did we do?

- Multi-scale images
- Multi-size convolutional kernel



CAC-NET: context cascade



- ✓ **Context capturing** : multi-kernel pooling and dilated convolution
- ✓ **Context aggregating**: **from global to local** in a sequentially cascaded manner
- ✓ **Residual correction**: improve the fusion of **different-level context**

CAC-NET: refinement

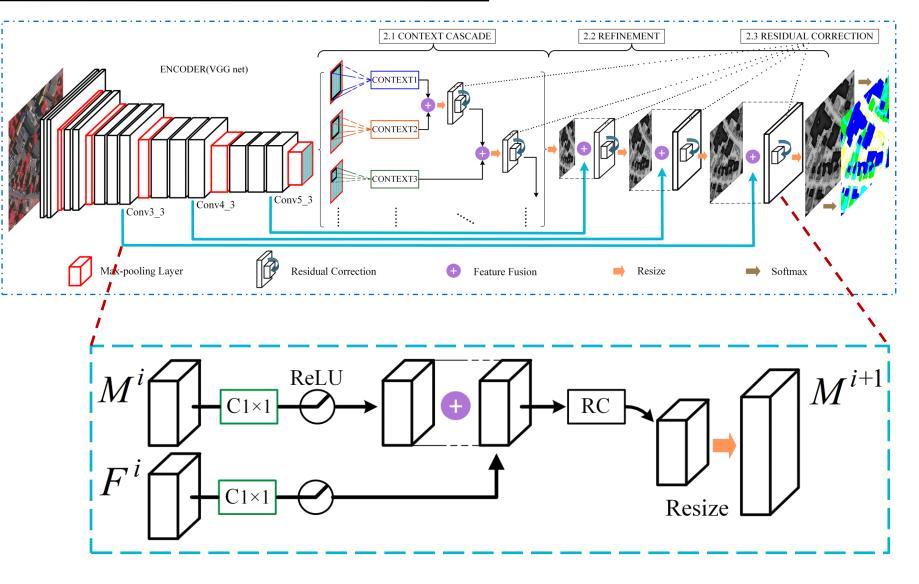
Local details

long-span connection progressively introduced

Residual correction

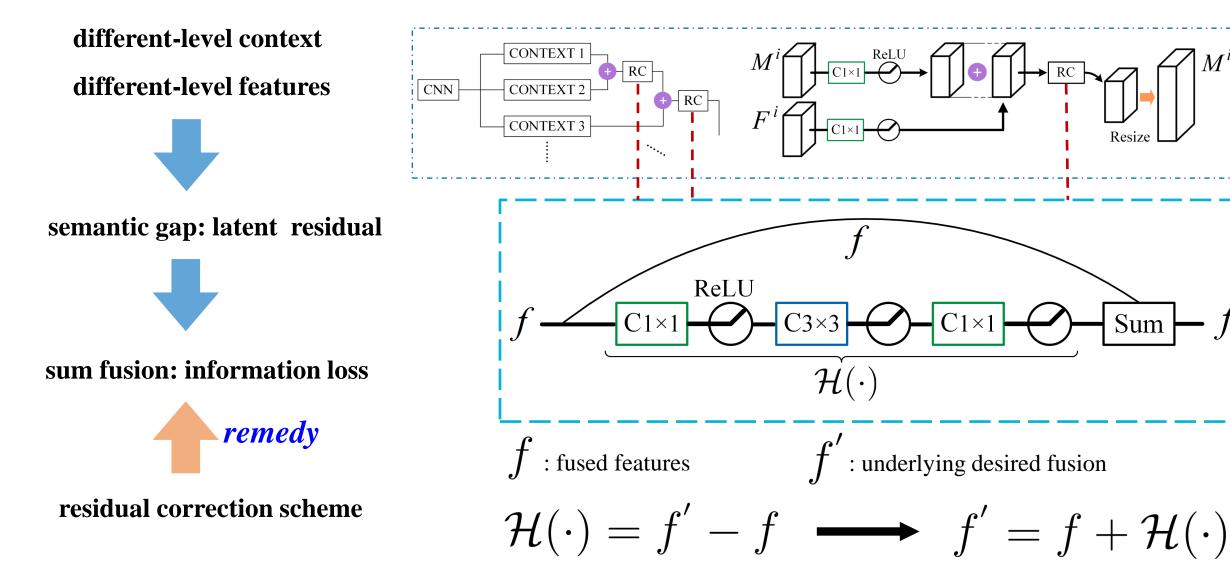
improve different-level

features fusion



CAC-NET: residual correction

 M^{i+1}



Dataset:

ISPRS Vaihingen 2D semantic labeling Challenge

Image: IRRG (infrared red green) ✓ ONLY
Elevation data: DSM (digital surface model)
NDSM (normalized ~)

Training: crop patches (400 * 400)

data augmentation

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

Evaluation metric:

Intersection over Union (IoU)

$$IoU(P_m, P_{gt}) = \frac{|P_m \cap P_{gt}|}{|P_m \cup P_{gt}|}$$

 P_{gt} : ground truth
 P_m : prediction

Table1: comparison with excellentdeep models

 Table2: ablation experiment

Table 1: Comparison with the state-of-the-art models(%). surf: impervious surface (roads), veg: low vegtation.

L		•	•			
Method	surf	roof	veg	tree	car	Mean
Segnet [5]	66.9	76.1	44.6	69.7	62.4	63.9
FCN-8s [1]	75.2	80.4	65.6	70.5	45.8	67.5
Deeplab-vgg [16]	80.0	87.9	70.0	75.4	36.1	69.9
Ours(vgg)	81.3	89.3	70.3	75.5	66.4	76.6
Deeplab-res101	81.6	90.7	71.4	76.7	58.9	75.9
Ours(res101)	84.0	90.9	72.1	76.6	75.3	79.8

Table 2: Ablation Experiment(%). MPD: multiple average pooling and dilation, MCC: multi-context cascade, RC: residual correction.

Method	surf	roof	veg	tree	car	Mean
Ours(Deeplab_13)	76.7	82.3	67.8	72.6	40.7	68.0
+ MPD	79.7	86.5	68.3	74.6	47.2	71.3
+ Refinement	80.1	87.1	68.0	74.6	55.5	73.1
+ MCC	80.3	88.1	69.5	76.5	60.0	74.9
+ RC	81.3	89.3	70.3	75.5	66.4	76.6

Online evaluation metric:

F1 score and Overall Accuracy

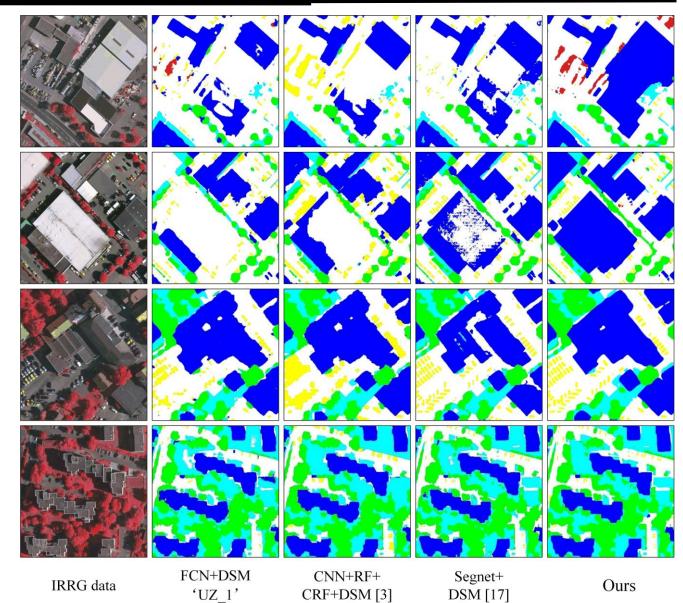
$$F1 = 2 \frac{pre \times rec}{pre + rec}$$
 and $rec = \frac{tp}{C}$, $pre = \frac{tp}{P}$

Table3: ISPRS 2D semantic labeling

challenge results

Table 3: ISPRS 2D Semantic Labeling Challenge results(%). OA:Overall Accuracy, DSM: Digital Surface Model

Method	surf	roof	veg	tree	car	OA
FCN+DSM('UZ_1')	89.2	92.5	81.6	86.9	57.3	87.3
CNN+RF+CRF+DSM [3]	89.5	93.2	82.3	88.2	63.3	88.0
FCN+RF+CRF [2]	90.5	93.7	83.4	89.2	72.6	89.1
FCN+Edge+DSM [10]	90.4	93.6	83.9	89.7	76.9	89.2
Segnet+DSM [19]	91.0	94.5	84.4	89.9	77.8	89.8
Ours(res101)	92.7	95.3	84.3	89.6	80.8	90.6



Qualitative comparison

Future work

Instance semantic labeling

Thank you for your attention !