## Psuedo Reversible Symmetric Extension for LIFTING-bASED NONLINEAR-PHASE PARAUNITARY FILTER BANKS

## T. Suzuki, N. Tanaka, and H. Kudo @ Univ. of Tsukuba, Japan

## 1. Purpose \& Preparation

## Our target is more efficient lossy-to-lossless (L2L) image coding.

lifting-based nonlinear-phase paraunitary filter banks (L-NLPPUFBs) which are more efficient reversible transforms pseudo reversible symmetric extension (P-RevSE)
which solves the image boundary problem on the reversible transforms

## Lifting Structure



Map integer to integer (signals) Lossless when quantization width $=1$ Lossy when quantization width > 1 FBs can be factorized into lifting structures where the constraint is $\operatorname{det}(\mathbf{E}(z))= \pm 1$ Be also used for LT in JPEG XR

- : "rounding operation" which rounds a floating-point number to an integer $P$ : "lifting coefficient" which is a floating-point number


## 2. P-RevSE for L-NLPPUFBs (Proposal)

## Nonlinear-Phase Paraunitary Filter Banks (NLPPUFBs) [5]

The lattice structure is as follows:
$\mathbf{E}(z)=\left(\prod_{i=K-1}^{1} \mathbf{G}_{i}\left[\begin{array}{cc}\mathbf{I} & \mathbf{O} \\ \mathbf{O} & z^{-1} \mathbf{I}\end{array}\right]\right) \mathbf{G}_{0}$
$\mathbf{G}_{k}$ : an $M \times M$ arbitrary unitary matrix $\operatorname{det}\left(\left.\mathbf{E}(z)\right|_{z=1}\right)= \pm 1$

NOT limited by the linear-phase property,
i.e., they have high compression rates ex) The lapped transform (LT) in JPEG XR has the linear-phase property Can be easily factorized into lifting structures

## Pseudo Reversible Symmetric Extension (P-RevSE)

 for Lifting-based NLPPUFBs (L-NLPPUFBs)Even if NLPPUFBs can be easily factorized into lifting structures, the conventional SE cannot achieve reversible transforms.

If $\mathbf{V}$ is also expressed as lifting structures,
the SE can achieve reversible transforms
A minimum condition to realize lifting factorization:

$$
\operatorname{det}(\mathbf{V})= \pm 1
$$

According to the condition, we control the det. of the matrices in

$$
\tilde{\mathbf{V}}=\frac{\mathbf{V}}{M / 2 \sqrt{|\operatorname{det}(\mathbf{V})|}}
$$

On the other hand, if $\tilde{\mathbf{U}}, \tilde{\mathbf{V}}$ are significantly different from $\mathbf{U}, \mathbf{V}$, smoothness at the boundary may be lost and may degrade compression efficiency.
To preserve the smoothness,
we design the L-NLPPUFBs by considering the differences as

$$
C_{d e t}=(|\operatorname{det}(\mathbf{V})|-1)^{2}
$$

We designed 3 types of $4 \times 12$ NLPPUFBs $(K=3)$ : not boundary (A), upper boundary (B), lower boundary (C)



Frequency responses (black: type $A$, pink: type $B$, light blue: type $C$ ) Coding gain of the resulting $4 \times 12$ L-NLPPUFBs

| Boundary | Not | Upper | Lower |
| :---: | :---: | :---: | :---: |
| $C_{c g}$ | 8.3168 | 8.2852 | 8.3173 |

All types of NLPPUFBs have almost same property.
[2] C. Tu et al., "Low-complexity hierarchical lapped transform for lossy-to-lossless image coding in JPEG" SPIE, 2008.
[5] X. Gao et al., "On factorization of M-channel paraunitary filterbanks," IEEE TSP, 2001 [9] Y. Tanaka et al., "A non-expansive convolution for nonlinear-phase paraunitary filter banks and its application to image coding," ACSSC. 2005.

$$
\text { oanks and its application to image coding," ACSSC. } 2005 .
$$

## Symmetric Extension (SE) for NLPPUFBs [9]

In lapped transforms such as NLPPUFBs, * periodic extension (PE) is not smooth. a smooth nonexpansive convolution should be used at the boundaries not to increase the number of samples and achieve more efficient coding.
Upper boundary processing of NLPPUFBs $(K=3)$ are as follows:


When $\mathbf{G}_{k}=\left[\begin{array}{ll}\mathbf{A}_{k} & \mathbf{B}_{k} \\ \mathbf{C}_{k} & \mathbf{D}_{k}\end{array}\right]$ where each submatrix is $M / 2 \times M / 2$,
by solving a simultaneous matrix equation, we obtain the following forms:

## 3. Experimental Results




$$
\begin{aligned}
& \mathbf{V}=\mathbf{A}_{1}\left(\mathbf{B}_{2} \mathbf{J C}_{2}^{T}+\mathbf{A}_{2} \mathbf{J} \mathbf{D}_{2}^{T}\right)+\mathbf{B}_{1} \text { where } \operatorname{det}(\mathbf{V}) \neq 0 \\
& \mathbf{W}=\mathbf{A}_{1}\left(\mathbf{B}_{2} \mathbf{J} \mathbf{A}_{2}^{T}+\mathbf{A}_{2} \mathbf{J B}_{2}^{T}\right) \\
& \mathbf{J}=\left[\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & 1 & 1 \\
0 & 1 & 0 \\
1 & 0 & \cdots \\
1 & 0 & \\
0
\end{array}\right]
\end{aligned}
$$

Lower boundary case can be reconstructed in the same way as in the upper case.
T.


