PSUEDO REVERSIBLE SYMMETRIC EXTENSION FOR LIFTING-BASED NONLINEAR-PHASE PARAUNITARY FILTER BANKS

T. Suzuki, N. Tanaka, and H. Kudo @ Univ. of Tsukuba, Japan

1. Purpose & Preparation

Our target is more efficient lossy-to-lossless (L2L) image coding.

lifting-based nonlinear-phase paraunitary filter banks (L-NLPPUFBs) which are more efficient reversible transforms

pseudo reversible symmetric extension (P-RevSE) which solves the image boundary problem on the reversible transforms

Lifting Structure

- Map **integer to integer** (signals)
- **Lossless** when quantization width = 1
- **Lossy** when quantization width > 1
- FBs can be factorized into lifting structures
- where the constraint is $det(\mathbf{E}(z)) = \pm 1$
- Be also used for LT in JPEG XR

•: "rounding operation" which rounds a floating-point number to an integer

P : "lifting coefficient" which is a floating-point number

2. P-RevSE for L-NLPPUFBs (Proposal)

Nonlinear-Phase Paraunitary Filter Banks (NLPPUFBs) [5]

- The lattice structure is as follows:

 $\mathbf{E}(z)$

$$= \left(\prod_{i=k}^{1} \mathbf{G}_{i} \begin{bmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{O} & z^{-1} \mathbf{I} \end{bmatrix} \right) \mathbf{G}_{0} \qquad \mathbf{G}_{k} : \text{ an } M \times M \text{ and } \mathbf{G}_{k} = +1$$

_k : an MxM arbitrary unitary matrix

Lossy-to-lossless (L2L) Image Coding

Symmetric Extension (SE) for NLPPUFBs [9]

In lapped transforms such as NLPPUFBs, * periodic extension (PE) is not smooth. a smooth nonexpansive convolution should be used at the boundaries not to increase the number of samples and achieve more efficient coding.

$$(i=K-1)$$
 $[\bigcirc \ z, \ \mathbf{L}])$ $(\Box(z)|_{z=1}) = \pm 1$

- NOT limited by the linear-phase property,

i.e., they have high compression rates ex) The lapped transform (LT) in JPEG XR has the linear-phase property - Can be easily factorized into lifting structures

<u>Pseudo Reversible Symmetric Extension (P-RevSE)</u> for Lifting-based NLPPUFBs (L-NLPPUFBs)

Even if NLPPUFBs can be easily factorized into lifting structures, the conventional SE cannot achieve reversible transforms.

If **V** is also expressed as lifting structures, the SE can achieve reversible transforms.

A minimum condition to realize lifting factorization:

 $det(\mathbf{V}) = \pm 1$ According to the condition, we control the det. of the matrices in

$$\widetilde{\mathbf{V}} = \frac{\mathbf{V}}{\frac{M/2}{\sqrt{|\det(\mathbf{V})|}}}$$

On the other hand, if $\widetilde{\mathbf{U}}, \widetilde{\mathbf{V}}$ are significantly different from \mathbf{U}, \mathbf{V} , smoothness at the boundary may be lost and may degrade compression efficiency.

To preserve the smoothness,

we design the L-NLPPUFBs by considering the differences as

$C_{det} = \left(\left| \det(\mathbf{V}) \right| - 1 \right)^2$

We designed 3 types of 4x12 NLPPUFBs (K=3): not boundary (A), upper boundary (B), lower boundary (C) Upper boundary processing of NLPPUFBs (K=3) are as follows:

by solving a simultaneous matrix equation, we obtain the following forms:

Lower boundary case can be reconstructed in the same way as in the upper case.

3. Experimental Results

top

Original image

LT (JPEG XR) with SE no boundary error

FBs with PE boundary error

Frequency responses (black: type A, pink: type B, light blue: type C)

Coding gain of the resulting 4x12 L-NLPPUFBs

Boundary	Not	Upper	Lower	
C_{cg}	8.3168	8.2852	8.3173	

All types of NLPPUFBs have almost same property.

- [2] C. Tu et al., "Low-complexity hierarchical lapped transform for lossy-to-lossless image coding in JPEG" SPIE, 2008.
- [5] X. Gao et al., "On factorization of M-channel paraunitary filterbanks," IEEE TSP, 2001. [9] Y. Tanaka et al., "A non-expansive convolution for nonlinear-phase paraunitary filter banks and its application to image coding," ACSSC. 2005.

				1	T		no boundary error			
				Test	Bitrate	LT [2]	L-NL	PPUFBs		
Particular area of <i>Room</i> (0.25[bpp]):					Images	[bpp]	RevSE	PE	P-RevSE	
top and bottom are NOT boundaries.				0.25	26.569	27.436	27.578			
					Barbara	0.50	30.334	31.097	31.234	
						1.00	34.952	35.601	35.728	
Lossy image coding results (PSNR [dB])			[dB])		0.25	27.261	28.129	28.219		
					0.50	30.727	31.296	31.371		
					\rightarrow	1.00	34.213	34.758	34.805	
Lossless image coding results				-	Elaine	0.25	30.825	31.178	31.381	
						0.50	32.502	32.876	33.016	
(lossless bitrate [bpp])				1.00		34.179	34.746	34.894		
			-		0.25	31.603	31.965	32.251		
Test	LT [2]	L-NL	PPUFBs		Lena	0.50	35.024	35.300	35.524	
Images	RevSE	PE	P-RevSE			1.00	38.247	38.572	38.708	
Barbara	4.801	4.798	4.775	-		0.25	31.026	31.078	31.586	
Boat	5.124	5.103	5.093		Pepper	0.50	33.892	34.207	34.328	
Elaine	5.166	5.132	5.106			1.00	35.428	36.200	36.273	
Lena	4.587	4.615	4.587	-		0.25	27.818	28.684	29.048	
Pepper	4.954	4.907	4.897		Room	0.50	32.715	32.838	33.116	
Room	4.344	4.452	4.427	_		1.00	38.288	37.927	38.407	

IEEE ICIP 2017 @ Beijing, China