CGAN-Plankton: Towards Large-scale Imbalanced Class Generation and Fine-Grained Classification

China National Conventional Center Bejing, China September 19, 2017

Imbalanced Problem Statement

• Data distribution of WHOI-Plankton

Class	Total	Training	Testing
Mix	73.15%	72.38%	80.69%
Detritus	10.62%	10.58%	11.02%
Letocylindrus	3.54%	3.75%	1.28%
Mix_elongate d	1.86%	2.05%	1.06%
Dino30	1.27%	1.43%	1.17%
Sum	90.60%	90.19%	95.22%

Challenge: Class imbalance

Similarity between class and diversity within class

Challenge: fine-grained

What is a better solution on this problem?

- Average accuracy
- Precision and recall
- F1 score
- Confusion matrix

$$F1-score = 2 \frac{precision*recall}{precision+recall}$$

Don't be **fooled** by the weighted accuracy!

Two ways to solve the problem

• Common goal: shrink the imbalance

- Approach1: data re-sampling
 - Under sampling
 - Over sampling
 - Mix of over sampling and under sampling
- Approach2: cost-sensitive learning

– Impose heavy penalty on majority class

Sampling based approach

• Under sampling

• Over sampling

Sampling based approach

Under sampling

• Over sampling

Benchmark

Database	Model	Weighted accuracy	F1 score
WHOI-Plankton	CIFAR10 CNN	0.9297	0.1975
WHOI-Plankton	AlexNet	0.9395	0.3837
WHOI-Plankton	VGG16	0.9505	0.4302

CIFAR10 CNN

AlexNet

VGG16

Generative Adversarial Networks

CGAN-Plankton model

 $y = soft \max(CNN(x = \{full\}; \omega^*), CNN(x = \{\min ority\}; \omega_0))$

 $\min_{G} \max_{D} V(D,G) = E_{x \sim p_{data}(x)}[\log D(x)] + E_{z \sim p_{z}(z)}[\log(1 - D(G(z)))]$

Experiments results on WHOI-plank

Given a large imbalanced dataset with more than 100 classes

How to generate from the samples with diversity?

- Feature transfer form large classes
- Conditional generation
- Auxiliary classifier

Real samples from WHOI

Generated samples from model

Generated samples with categories

Experiments results

Database	Model	Weighted accuracy	F1 score
WHOI-Plankton	CIFAR10 CNN	0.9297	0.1975
WHOI-Plankton	AlexNet	0.9395	0.3837
WHOI-Plankton	VGG16	0.9475	0.4461
WHOI-Plankton + sampling	Transfer learning	0.9280	0.3339
WHOI-Plankton	CGAN-plankton	0.9425	0.4777
WHOI-Plankton +generated samples	CGAN-plankton	0.9443	0.4992

Visualization of confusion matrix

Transfer learning

VGG16

CGAN-plankton

Conclusions & discussion

- Use GAN to solve the imbalance problem(data driven)
- Feature transfer form large classes
- Conditional generation and auxiliary classifier

Database	Model	Accuracy	F1 score
original	CIFAR10 CNN	0.7109	0.6744
generated	CIFAR10 CNN	0.6017	0.4877
generated + original	CIFAR10 CNN	0.7374	0.7259

