GraDED: A graph based parametric dictionary learning algorithm for event detection

Tamal Batabyal, Rituparna Sarkar, Scott T. Acton

Virginia Image and Video Analysis (VIVA)

C.L. Brown Department of Electrical and Computer Engineering

University of Virginia, Charlottesville, VA 22904 2017.09.15

Events (Fire at a street corner)

-\

Slide 2 9/15/2017

Events (Car accidents > fire)

Slide 3 9/15/2017

Event detection

Event detection from videos

Temporal localization

(In how many frames the event happened?)

Spatial localization

(location of the event in each frame)

Slide 4 9/15/2017

Challenges

- Dynamic background videos
 (Car-mounted camera, hand-held camera)
- Illumination/Intensity variation
- Camera jitter

(Gait motion, motion of cars on uneven surface)

• No actual object to track (Fire, no shape prior)

√/\/

Slide 5 9/15/2017

Subspace based approach Columns as basis vectors Coefficient Vector, x Zero Nonzero $y \in \text{span}\{2^{nd}, 3^{rd}, 6^{th}, 8^{th}\}$ Input feature Vector, y

Subspaces → noise removal, minor illumination variation removal, low-dimensional representation

Slide 6 9/15/2017

Block-based dictionary

$$(D^*, X^*) = \min_{D, X} ||Y - DX||_F^2 \text{ s.t. } ||X||_0 \le T.$$

In our case,

$$\mathbf{D} = \begin{bmatrix} D_1 & D_2 & \cdots & D_P \end{bmatrix}$$

P = total number of partitions of each frame

Number of blocks, P = 4Number of frames, K = 5

 $B^{i} = i^{th} \text{ feature sub-volume}$ $B^{i} = \left[B_{1}^{i} B_{2}^{i} \cdots B_{K}^{i}\right]^{T} \in \mathbb{R}^{K \times S}$

 $B_j^i = S$ -dimensional feature (i^{th} block, j^{th} frame)

Feature = HOG features with a cell size 16×16

Slide 7 9/15/2017

Block-based dictionary

Slide 8 9/15/2017

Our contribution

Temporal dynamics of the event

 $\mathbf{D}_{\mathbf{i}} = \boldsymbol{U}_{i}^{T} \boldsymbol{\chi}_{i}$

(Graph between consecutive frames of *i*th subvolume)

Noise removal (PCA, sparse

approximation of coefficients)

Slide 9 9/15/2017

PCA of Bⁱ

Slide 10 9/15/2017

Block graph

Linear graph of 2nd blocks

Number of blocks = P Number of frames = K Number of free parameters = Number of weights in all P graphs = P(K-1)

Slide 11 9/15/2017

Graph basics

Normalized symmetric Laplacian, $\tilde{L} = D^{\frac{-1}{2}}LD^{\frac{-1}{2}}$

Slide 12 9/15/2017

Eigenmatrix of graph Laplacian

$$\label{eq:Li} \begin{split} L_i = U_i \Lambda_i U_i^T & \text{It belongs to O(K),} \\ \text{Distance-preserving} \\ \text{transformation/modulation} & \text{Precomputed and} \\ D_i = U_i^T \chi_i & \text{Precomputed and} \\ \end{split}$$

Intra-block mutual coherence is kept intact : $\mu_i (U_i^T \chi_i, U_i^T \chi_i) = \mu_i (\chi_i, U * U_i^T \chi_i) = \mu_i (\chi_i, \chi_i)$

Slide 13 9/15/2017

Dictionary learning algorithm

$$(D^*, X^*) = \min_{D,X} ||Y - DX||_F^2 \text{ s.t. } ||X||_0 \leq T.$$

$$\text{Index Alternating minimization}$$

$$\text{Update X:}$$

$$\text{Update D, keeping X fixed}$$

$$\text{Update D, keeping D fixed}$$

Gradient descent

Slide 14 9/15/2017

Flow chart for gradient descent

Slide 15 9/15/2017

Spatial localization

Dictionary, D

Hierarchical clustering

Total number of final clusters = 2.

Event and no-event clusters

Linkage: Unweighted average distance

Feature similarity: mutual coherence

Slide 16 9/15/2017

Temporal localization (P=4, K=5)

Slide 17 9/15/2017

Dataset

Disappearance of boat

Explosion at gas station

Frames: 75

Frames: 69 Frames: 77 Frame dim: 378×281 Frame dim: 632×342 Frame dim: 422×208

Slide 18 9/15/2017

Comparison with state-of-the-arts

Comparative results

Slide 19 9/15/2017

Result on parameter selection

UNIVERSITY *J***IRGINIA** BICENTENNIAL

9/15/2017

Thank you

谢谢

-<u>/////</u>

Slide 21 9/15/2017