GraDED: A graph based parametric dictionary learning algorithm for event detection

Tamal Batabyal, Rituparna Sarkar, Scott T. Acton

Virginia Image and Video Analysis (VIVA)
C.L. Brown Department of

Electrical and Computer Engineering
University of Virginia, Charlottesville, VA 22904
2017.09.15

Virginia Image and Video Analysis

UNIVERSITYof VIRGINIA
BICENTENNIAL

Events (Fire at a street corner)

Events (Car accidents $\boldsymbol{\nabla}$ fire)

Slide 3
9/15/2017

Event detection

Event detection from videos

Temporal localization

(In how many frames the event happened?)

Spatial localization

(location of the event in each frame)

Challenges

- Dynamic background videos
(Car-mounted camera, hand-held camera)
- Illumination/Intensity variation
- Camera jitter
(Gait motion, motion of cars on uneven surface)
- No actual object to track (Fire, no shape prior)

Subspace based approach

Subspaces \Rightarrow noise removal, minor illumination variation removal, low-dimensional representation

Block-based dictionary

$$
\left(D^{*}, X^{*}\right)=\min _{D, X}\|Y-D X\|_{F}^{2} \text { s.t. }\|X\|_{0} \leq T \text {. }
$$

In our case,

$$
\mathrm{D}=\left[\begin{array}{llll}
D_{1} & D_{2} & \cdots & D_{P}
\end{array}\right]
$$

$\mathrm{P}=$ total number of partitions of

Number of blocks, $\mathrm{P}=4$ Number of frames, K = 5

$$
\begin{gathered}
B^{i}=i^{t h} \text { feature sub-volume } \\
B^{i}=\left[\begin{array}{lll}
B_{1}^{i} B_{2}^{i} \cdots & \cdots B_{K}^{i}
\end{array}\right]^{T} \in R^{K \times S}
\end{gathered}
$$

$B_{j}^{i}=$ S-dimensional feature ($i^{\text {th }}$ block, $j^{\text {th }}$ frame)

Feature $=$ HOG features with a cell size 16×16

Block-based dictionary

Our contribution

Temporal dynamics of the event

(Graph between consecutive frames of $i^{\text {th }}$ subvolume)

Noise removal
 (PCA, sparse approximation of coefficients)

PCA of B^{i}

$$
\chi_{i}=\text { first } \boldsymbol{M}_{\boldsymbol{i}} \text { eigenvectors taken from PCA of } B^{i}
$$

Dimension of $\mathrm{X}, \quad \mathrm{M}=\sum_{i=1}^{P} M_{i}$

Block graph

Number of blocks $=P$
Number of frames $=K$
Number of free parameters = Number of weights in all P graphs $=\mathrm{P}(\mathrm{K}-1)$

Linear graph of $2^{\text {nd }}$ blocks

Graph basics

Normalized symmetric Laplacian, $\tilde{L}=D^{\frac{-1}{2}} L D^{\frac{-1}{2}}$

Eigenmatrix of graph Laplacian

$$
\mathbf{L}_{\mathbf{i}}=\mathbf{U}_{\mathbf{i}} \boldsymbol{\Lambda}_{\mathbf{i}} \mathbf{U}_{\mathbf{i}}^{\mathbf{T}}
$$

It belongs to $\mathrm{O}(\mathrm{K})$,
Distance-preserving transformation/modulation

Intra-block mutual coherence is kept intact :

$$
\mu_{i}\left(U_{i}^{T} \chi_{i}, U_{i}^{T} \chi_{i}\right)=\mu_{i}\left(\chi_{i}, U * U_{i}^{T} \chi_{i}\right)=\mu_{i}\left(\chi_{i}, \chi_{i}\right)
$$

Dictionary learning algorithm

Flow chart for gradient descent

Spatial localization

Dictionary, D

Feature for block 1

Feature for block P-1

Feature for block P

Hierarchical clustering
Total number of final clusters $=2$.

Event and no-event clusters

Linkage: Unweighted average distance

Feature similarity: mutual coherence

Temporal localization ($\mathrm{P}=4, \mathrm{~K}=5$)

Dataset

Disappearance of boat

Frames: 75
Frame dim: 378×281

Explosion at gas station

Frames: 77
Frame dim: 632×342 Frame dim: 422×208

Comparison with state-of-the-arts

Comparative results

\square Video 1 SN \quad Video 1 SP $■$ Video 2 SN \quad Video 2 SP $■$ Video 3 SN $■$ Video 3 SP

$$
\mathbf{S N}=\frac{\text { True Positive }}{\text { True Positive }+ \text { False Negative }} \quad \mathbf{S P}=\frac{\text { True Negative }}{\text { True Negative }+ \text { False Positive }}
$$

Result on parameter selection

Slide 20

Thank you

谢谢

