



# Cascaded Temporal Spatial Features for Video Action Recognition

Tingzhao Yu<sup>1;2</sup>, Huxiang Gu<sup>1</sup>, Lingfeng Wang<sup>1</sup>, Shiming Xiang<sup>1</sup>, Chunhong Pan<sup>1</sup>



Code Available at https://github.com/Tsingzao/motion\_image

National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
 School of Computer and Control Engineering, University of Chinese Academy of Sciences





## **Challenges and Datasets**



Kinects

第1/10页



## **Video based Action Recognition**

- > Problem Formulation:
  - **Recognize the actions being taken place, i.e., video sequence**
- > Assumption:
  - □ Known action classes Video Classification (trimmed video)











- (a) C3D exploits the spatial-temporal features simultaneously
- (b) F<sub>ST</sub>CN factorizes the spatialtemporal features into spatial and temporal domain
- (c) the Proposed Architecture decouples the spatial-temporal features into cascaded temporal and spatial domain.

The *motivation* behind this design is to achieve deep nonlinear feature representations with reduced network parameters.

第3/10页



# Analysis

• From 3D Convolution to Decoupled 1D and 2D



第4/10页



 $\mathcal{K}^{pq} v^{(x+p)(y+q)}$ 

• From 3D Convolution to Decoupled 1D and 2D

$$v^{xy} = \sum_{m} \sum_{p=1}^{P} \sum_{q=1}^{Q}$$

第5/10页



• From 3D Convolution to Decoupled 1D and 2D

$$v^{xyz} = \sum_{m} \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} \mathcal{K}^{pqr} v^{(x+p)(y+q)(z+r)}$$

第5/10页

Width \* Height \* Temporal but not cross channel

[2014 BMVC] Speeding up Convolutional Neural Networks with Low Rank Expansions
 [2015 ICLR] Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition
 [2016 ICLR] Convolutional neural networks with low-rank regularization
 [2016 ICLR] Training CNNs with Low-Rank Filters for Efficient Image Classification



• From 3D Convolution to Decoupled 1D and 2D

$$v^{xyz} = \sum_{m} \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} \mathcal{K}^{pqr} v^{(x+p)(y+q)(z+r)}$$

Width \* Height \* Temporal but not cross channel

- **Rewrite as**  $\mathcal{O} = \mathcal{I} * \mathcal{K}$
- Suppose we have  $\mathcal{K}=k_t\otimes K_{xy}$  , Kronecker product

[2014 BMVC] Speeding up Convolutional Neural Networks with Low Rank Expansions
 [2015 ICLR] Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition
 [2016 ICLR] Convolutional neural networks with low-rank regularization
 [2016 ICLR] Training CNNs with Low-Rank Filters for Efficient Image Classification



• From 3D Convolution to Decoupled 1D and 2D

$$v^{xyz} = \sum_{m} \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} \mathcal{K}^{pqr} v^{(x+p)(y+q)(z+r)}$$

Width \* Height \* Temporal but not cross channel

- **Rewrite as**  $\mathcal{O} = \mathcal{I} * \mathcal{K}$
- Suppose we have  $\mathcal{K}=k_t\otimes K_{xy}$  , Kronecker product

$$k_t \in \mathbb{R}^{n_t}$$

$$K_{xy} \in \mathbb{R}^{n_x \times n_y}$$

 $F_t(i_x, i_y, :) = \mathcal{I}(i_x, i_y, :) * k_t, \qquad i_x = 1, 2, \cdots, m_x, \quad F_{ts}(:, :, i_c) = F_t(:, :, i_c) * K_{xy}, \quad i_c = 1, 2, 3.$  $i_y = 1, 2, \cdots, m_y.$ 

- **[2014 BMVC]** Speeding up Convolutional Neural Networks with Low Rank Expansions
- **[2015 ICLR]** Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition
- **[2016 ICLR]** Convolutional neural networks with low-rank regularization
- **[2016 ICLR]** Training CNNs with Low-Rank Filters for Efficient Image Classification

第5/10页









### Complexity Analysis

| Criterion    | 3D             | 2D * 1D                  | 1D * 2D                  |
|--------------|----------------|--------------------------|--------------------------|
| # Parameters | $2kd^3$        | <i>kd</i> ( <i>d</i> +1) | <i>kd</i> (1+ <i>d</i> ) |
| Computation  | $k(1+k)WHTd^3$ | kd(d+k)WHT               | kd(T+kd)WH               |



### Visualization of the Motion Image compared with Dynamic Image



Complexity Analysis

| Criterion    | 3D             | 2D * 1D                  | 1D * 2D                  |
|--------------|----------------|--------------------------|--------------------------|
| # Parameters | $2kd^3$        | <i>kd</i> ( <i>d</i> +1) | <i>kd</i> (1+ <i>d</i> ) |
| Computation  | $k(1+k)WHTd^3$ | kd(d+k)WHT               | kd(T+kd)WH               |

$$\mathbf{d}^* = \sum_t \alpha_t \psi(V_t)$$

$$F_t(i_x, i_y, :) = \sum_t \alpha_t \varphi(\mathcal{I}_t)$$

第7/10页



### **Recognition Results:** on UCF101 Action Dataset

|                     | Method                  | Accuracy |
|---------------------|-------------------------|----------|
| Trajectory Features | iDT [1]                 | 0.762    |
| Trajectory reatures | iDT + FV [2]            |          |
|                     | ImageNet [12]           | 0.688    |
| Pretrained CNN      | CNN-M-2048 [9]          | 0.730    |
|                     | VGG [13]                | 0.784    |
|                     | Dynamic Image [3]       | 0.709    |
| Cinala Imaga        | Single Frame [4]        | 0.742    |
| Single Image        | Motion Image [5]        | 0.721    |
|                     | Optical Flow [4]        | 0.823    |
|                     | ConvNet [14]            | 0.633    |
|                     | LSTM [7]                | 0.758    |
|                     | C3D [15]                | 0.815    |
| <b>CNN</b> Features | TSB-C3D [16]            | 0.827    |
|                     | ResNet3D                | 0.826    |
|                     | F <sub>ST</sub> CN [8]  | 0.845    |
|                     | Two-Stream [9]          | 0.869    |
|                     | Dynamic Image+Frame [3] | 0.769    |
| Fusion Image        | Optical Flow+Frame [4]  | 0.859    |
| -                   | Motion Image+Frame [5]  | 0.866    |

| Table 1. Comparison with Dynamic Image on UCF-101. |        |        |        |         |
|----------------------------------------------------|--------|--------|--------|---------|
| Method                                             | Split1 | Split2 | Split3 | Average |
| Mean Image                                         | 52.6%  | 53.4%  | 51.7%  | 52.6%   |
| Max Image                                          | 48.0%  | 46.0%  | 42.3%  | 45.4%   |
| Dynamic Image                                      | 57.2%  | 58.7%  | 57.7%  | 57.9%   |
| Multi Dynamic Image                                | -      | -      | -      | 70.9%   |
| Multi Dynamic Map                                  | -      | -      | -      | 67.1%   |
| Ours (without Aug)                                 | 44.9%  | 47.2%  | 43.7%  | 45.3%   |
| Ours (with Aug)                                    | 72.1%  | 72.6%  | 71.4%  | 72.1%   |

#### Tricks:

- 1, Data Augmentation.
- 2, Pre-Train on Sports-1M.
- **3. Video Level (vote).**
- 4, Fusion with Frames.



### **Recognition Results:** on HMDB51 Action Dataset

COMPARISON WITH STATE-OF-THE-ART METHODS ON HMDB-51.

| Method                                                                        | Accuracy                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iDT [1]                                                                       | 0.519                                                                                                                                                                                                                       |
| Dynamic Image [3]<br>Single Frame [4]<br>Motion Image [5]<br>Optical Flow [4] | 0.358<br>0.471<br>0.493<br><b>0.515</b>                                                                                                                                                                                     |
| VisualAttention [6]<br>LSTM [7]<br>ResNet3D<br>F <sub>ST</sub> CN [8]         | $\begin{array}{c} 0.413 \\ 0.440 \\ 0.469 \\ 0.490 \end{array}$                                                                                                                                                             |
| Dynamic Image+Frame [3]<br>Two-Stream [9]<br>Motion Image+Frame [5]           | 0.428<br>0.528<br><b>0.529</b>                                                                                                                                                                                              |
|                                                                               | MethodiDT [1]Dynamic Image [3]<br>Single Frame [4]<br>Motion Image [5]<br>Optical Flow [4]VisualAttention [6]<br>LSTM [7]<br>ResNet3D<br>$F_{ST}$ CN [8]Dynamic Image+Frame [3]<br>Two-Stream [9]<br>Motion Image+Frame [5] |

\*Note that this table does not report the results combing CNN features with trajectory features.



第9/10页



### **Recognition Results:** on HMDB51 Action Dataset

**Truth:** 

**C3D:** 

**Ours:** 



Truth: C3D: Ours:

climb climb climb



catch <mark>golf</mark> catch



Truth:chewC3D:chewOurs:smoke



Truth:cartwheelC3D:golfOurs:golf



Truth:ride horseC3D:ride horseOurs:ride horse



Truth:smokeC3D:laughOurs:smoke



:

drink

eat

**C3D:** 

**Ours:** 



Truth:waveC3D:swordOurs:shot



### Reference

- [3] Hakan Bilen, Basura Fernando, Efstratios Gavves, Andrea Vedaldi, and Stephen Gould, "Dynamic image networks for action recognition," in IEEE International Conference on Computer Vision and Pattern Recognition, 2016.
- [4] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman, "Convolutional two-stream network fusion or video action recognition," in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016.
- [5] Tingzhao Yu, Huxiang Gu, Lingfeng Wang, Shiming Xiang, and Chunhong Pan, "Cascaded Temporal Spatial Features for Video Action Recognition," in Proceedings of the IEEE Conference on Image Processing, 2017
- [8] Karen Simonyan and Andrew Zisserman, "Two-stream convolutional networks for action recognition in videos," in Advances in Neural Information Processing Systems, 2014, pp. 568–576.
- [9] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E Shi, "Human action recognition using factorized spatio-temporal convolutional networks," in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4597–4605.
- [15] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri, "Learning spatiotemporal features with 3d convolutional networks," in 2015 IEEE International Conference on Computer Vision. IEEE, 2015, pp. 4489–4497.







