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PHOTOREALISTIC ADAPTATION AND INTERPOLATION OF FACIAL EXPRESSIONS 
USING HMMS AND AAMS FOR AUDIO-VISUAL SPEECH SYNTHESIS 

BACKGROUND & OBJECTIVES

• Intelligent agents have a continuous presence in everyday life and speech 
synthesis (both acoustic & audio-visual) constitutes a vital asset for human –
computer interaction

• Achieving a high degree of naturalness in HCI depends on the ability of the 
agent to express emotions

• However, there is a huge data overhead when considering synthesis of 
expressive speech in a large non-discrete emotional space

• We tackle the problem this problem by:
➢using HMM adaptation to adapt an existing audio-visual speech synthesis 

HMM set to a new emotion using a small amount of adaptation data
➢employing HMM interpolation to combine HMM sets to generate speech 

with intermediate styles

ACTIVE APPEARANCE MODELS (AAM)

Weights Neutral Anger Happiness Sadness

0.1 − 0.9 8.7 4.35 0 86.96

0.3 − 0.7 18.18 0 0 81.82

0.5 − 0.5 45.83 0 4.17 50

0.7 − 0.3 83.33 0 0 16.67

0.9 − 0.1 91.3 4.35 0 4.35

EXPERIMENTS & RESULTS

CONCLUSIONS

• We can successfully adapt an HMM-based audio-visual speech synthesis 
system to a target emotion using a small number of adaptation data. Level of 
expressiveness increases with number of adaptation sentences used.

• HMM interpolation gives us audio-visual speech with intermediate 
characteristics between the interpolated emotions.

• DNN version of the system can be found in [4].
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HMM-BASED AUDIO-VISUAL SPEECH SYNTHESIS [1]

Example of the first 
eigentexture and the 

variations it causes to the 
mean texture

Face shape       𝒔 = ത𝒔 + σ𝒊=𝟏
𝒏 𝑝𝑖𝒔𝒊

Face texture 𝑨(𝒙) = 𝑨(𝒙) + σ𝒊=𝟏
𝒍 𝜆𝑖𝑨𝒊

ത𝒔: mean shape
𝑝𝑖: eigenshape coefficients
𝚨(𝒙): mean texture
𝜆𝑖: eigentexture coefficients

𝝁, 𝚺 : original mean and covariance matrix
ഥ𝝁, ഥ𝚺: adapted mean and covariance matrix
𝜺, 𝚭: transformation bias and matrix

• Extract acoustic and visual 
features

• Train HMMs with EM algorithm
• Cluster similar phonetic contexts 

using decision trees

TRAINING

• Analyze input text

• Generate features from HMMs

• Reconstruct audio and video

SYNTHESIS

Adaptation

CSMAPLR ([2]) adaptation is employed 
to adapt a neutral emotion HMM 
system to another emotion using a 
small amount of adaptation 
sentences:

ഥ𝝁 = 𝒁 𝝁 + 𝜺, ഥ𝚺 = 𝜡𝚺𝜡𝚻 1.5
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𝝁, 𝚺 : interpolated mean – covariance matrix
𝝁𝒊, 𝚺𝐢: adapted mean – covariance matrix of ith
HMM set 
𝑎𝑖: interpolation weight for ith HMM set

Interpolation

Interpolation between observations ([3]) is 
employed to interpolate statistics of HMMs 
from different HMM sets:

𝝁 = σ𝒊=𝟏
𝑲 𝛼𝜄𝝁𝒊 , 𝚺 = σ𝒊=𝟏

𝑲 𝛼𝑖
2𝚺𝒊

We trained four HMM-based audio-visual speech synthesis systems using the 
CVSP-EAV([4]) corpus which includes: happiness, sadness, anger, neutral.

First Evaluation

• We adapted the neutral HMM system to the other 3 emotions using a 
variable number of adaptation sentences.

• 32 humans evaluated the expressiveness of the agent on a discrete scale of 1 
to 3 (increasing).

Second Evaluation

• We Interpolated the 6 emotion combinations for variable weight pairs: 
(0.9, 0.1), (0.7, 0.3), (0.5, 0.5), (0.3, 0.7), (0.1, 0.9).

• 28 humans were asked to recognize the emotion in each combination/pair.

Emotion classification rate when interpolating the 
neutral and sadness HMM systems (% scores).

The face of the agent is modeled by Active Appearance Models:

anger

mean texture #1 eigentexture mean + 3 sd
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Interpolating the anger and happiness HMM sets. 
(respective weights shown under each image).

Subjective expressiveness score for a variable number of 
adaptation sentences. Adapting the neutral emotion to other emotions.
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