LEARNING-BASED TONE MAPPING FOR IMAGE MATCHING

ABSTRACT

- > Propose a new learning-based tone mapping framework which
 - relies on a regression-based approach to predict locally adaptive parameter-maps,
- results in tone-mapped images that are optimal for image matching under drastic lighting changes.
- > Introduce a mechanism to "generate training samples" using a similarity maximization approach.
- Proposed model
 - evaluated against state-of-the-art TMOs using various descriptor extraction schemes.
 - provides more stable matches in the images undergone drastic lighting variations in the "HDR dataset".

ICIP

Aakanksha Rana, Giuseppe Valenzise*, Frédéric Dufaux* LTCI, Télécom ParisTech, Université Paris-Saclay *L2S, CNRS, CentraleSupelec, Université Paris-Sud

Selection of training samples

- Identify the 'key' locations in each scene using DoG. Check iteratively for each location if it is detected in majority images undergone lighting variations.
- Randomly select of a keypoint sample location Extract SIFT feature defined by gradient orientation given [Dong. et al[15]] as

$$h(\Theta|p)[\mathbf{x}] = \int \mathcal{G}_{\delta}(\Theta - \angle \nabla p(y)) \mathcal{G}_{\hat{\sigma}}(y - x) \|\nabla p(y)\| d(y)$$

Maximization Objective :

$$\mathcal{F}(\boldsymbol{\theta}) = \frac{1}{K} \sum_{\{i,j\} \in P} \Phi(\boldsymbol{h}_i(\boldsymbol{\theta}), \boldsymbol{h}_j(\boldsymbol{\theta})).$$

where

$$\Phi(\boldsymbol{h}_i, \boldsymbol{h}_j) = \log(1 + \exp(\epsilon - \boldsymbol{h}_i^T \boldsymbol{h}_j))$$

 $\boldsymbol{\theta}_{t+1} =$ $\nabla \Phi_{\{i,j\}}$ pairs P drawn from S. K:= number of image pairs in P. **Ensure:** for iters = 1 : epochs do Shuffle the order of n pairs in Pfor pair = 1 : K do

Compute $\nabla \Phi_{pair}$ (as in Eq. (7)). Update θ (as in Eq. (5)). end for

Learning the Prediction Model

 Densly sample the key locations and extract SIFT feature. Feed the SVR model with the features and corresponding ground truth and solve the following minimization problem:

$$\min_{\omega,b,\xi,\xi^*} \frac{1}{2} \|\omega^2\| + C \sum_{i=1}^n (\xi_i + \xi_i^*)$$

subject to:

 $\theta_{k(i)} - (\omega^T \psi(f_i) + b) \le \chi + \xi_i,$ $(\omega^T \psi(f_i) + b) - \theta_{k(i)} \le \chi + \xi_i^*,$ $\xi_i, \xi_i^* \ge 0, i = 1..n$

Beijing, China

Sept 17 – 20, 2017

TMO Framework

> Tone Mapping $I' = \varphi(I, \theta)(1)$, where $\theta(x) = \{\theta_1, \theta_2 \dots\}.$

We demonstrate our model for Bilateral filtering based tone mapping where:

 $\mathbf{\phi} = I/L$, an Illumination normalization model and L is estimated luminance using Bilateral filter L =

 $\frac{1}{N} \left(\sum_{y \in S} G_{\theta_1}(\|x - y\|) \cdot G_{\sigma^r}(\|I_x - I_y\|) \cdot I_y \right).$ (2) where N is the normalization term.

SGD based Optimization :

$$= \boldsymbol{\theta}_t - \gamma_t \cdot \nabla \Phi_{\{i,j\}t}(\boldsymbol{\theta}_t), \tag{5}$$

$$(\boldsymbol{\theta}) = \left\{ \frac{\partial \Phi}{\partial \mathcal{R}_i} \cdot \frac{\partial \mathcal{R}}{\partial \varphi_i} \cdot \frac{\partial \varphi_i}{\partial \boldsymbol{\theta}}, \frac{\partial \Phi}{\partial \mathcal{R}_j} \cdot \frac{\partial \mathcal{R}}{\partial \varphi_j} \cdot \frac{\partial \varphi_j}{\partial \boldsymbol{\theta}} \right\}$$
(7)

Require: a scene S with N images and the set of possible image

epochs:= number of passes over the set P.

end for

PLEIN PHARE

