Online Convolutional Dictionary Learning

Jialin Liu^a Cristina Garcia-Cardona^b Brendt Wohlberg^b Wotao Yin^a

^aDepartment of Mathematics, UCLA, Los Angeles, CA ^bLos Alamos National Laboratory

ICIP 2017, Beijing

Convolutional Sparse Coding

Signal $\mathbf{s} \in \mathbb{R}^N$.

Dictionary **d** and its kernels $\mathbf{d} = (\mathbf{d}_1, \mathbf{d}_2, \cdots, \mathbf{d}_M)^T, \mathbf{d}_m \in \mathbb{R}^D$.

Sparse coefficient maps $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_M)^T, \mathbf{x}_m \in \mathbb{R}^N$.

The model is

$$\mathbf{s} \approx \sum_{m=1}^{M} \mathbf{d}_m * \mathbf{x}_m.$$

 (Zeiler et al. 2010) Given s and d, convolutional basis pursuit denoising (CBPDN):

$$\min_{\mathbf{x}} \ell(\mathbf{d}, \mathbf{x}; \mathbf{s}) = \min_{\{\mathbf{x}_m\}} \frac{1}{2} \left\| \sum_{m=1}^{M} \mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \right\|_2^2 + \lambda \sum_{m=1}^{M} \|\mathbf{x}_m\|_1$$

An example of Convolutional Sparse Coding

 \mathbf{d}_1

Applications of CSC

- Image super-resolution (Gu et al. 2015)
- Trajectory Reconstruction (Zhu and Lucey 2015)
- Denoising (Wohlberg 2016)
- Image Decomposition (Zhang and Patel 2016)

...

Convolutional Dictionary Learning

 Given training signals {s_k}, convolutional dictionary learning (CDL):

$$\min_{\mathbf{d}\in\mathsf{C},\{\mathbf{x}_k\}}\sum_{k=1}^{K}\ell(\mathbf{d},\mathbf{x}_k;\mathbf{s}_k) \ .$$

- Conventional methods: batch learning.
 Alternative update d and {x_k}.
- Single step complexity and memory usage¹: O(KMN). Typical value: K = 40, M = 64, N = 256 × 256. Total time: 15 hours ; memory: 7.5 GB.

¹[Šorel and Šroubek 2016] and [Garcia-Cardona and Wohlberg 2017]

A statistic estimator:

$$\mathbf{d}^{(t)} = \underset{\mathbf{d}\in\mathsf{C}}{\arg\min}\left\{\min_{\mathbf{x}}\ell(\mathbf{d},\mathbf{x},\mathbf{s}^{(1)}) + \dots + \min_{\mathbf{x}}\ell(\mathbf{d},\mathbf{x},\mathbf{s}^{(t)})\right\}.$$

An online estimator (Mairal et al. 2009):

$$\begin{split} \mathbf{x}^{(t)} &= \underset{\mathbf{x}}{\arg\min} \, \ell(\mathbf{d}^{(t-1)}, \mathbf{x}; \mathbf{s}^{(t)}). \\ \mathbf{d}^{(t)} &= \underset{\mathbf{d}\in\mathsf{C}}{\arg\min} \, \left\{ \underbrace{\ell(\mathbf{d}, \mathbf{x}^{(1)}, \mathbf{s}^{(1)}) + \dots + \ell(\mathbf{d}, \mathbf{x}^{(t)}, \mathbf{s}^{(t)})}_{\text{surrogate function } \mathcal{F}^{(t)}(\mathbf{d})} \right\} \,. \end{split}$$

• $\mathcal{F}^{(t)}$ is quadratic on **d**.

Keeping Hessian matrix and a vector in memory. Constant computational cost.

BuckBround	onnie / ngontinn i	onnine / ingointinin in	Numerical Resources
Solving sub	problem		
To compu	te $\mathcal{F}^{(t)}(\mathbf{d})$,		

- Spacial domain: Flops: O(M²D²N); memory usage: O(M²D²).
- Frequency domain:
 Flops: O(M²N); memory usage: O(M²N).

To solve $\mathbf{d}^{(t)} \leftarrow \arg\min_{\mathbf{d} \in \mathsf{C}} \mathcal{F}^{(t)}(\mathbf{d})$,

- Degraux et al. 2017 uses block-coordinate gradient descent. Flops: $\mathcal{O}(1/\epsilon)$.
- Wang et al. 2017 uses Augmented Lagrangian method + iterated Sherman-Morrison. Flops: O(1/ε)..
- Our work uses FISTA. Flops: $\mathcal{O}(1/\sqrt{\epsilon})$.

Frequency-domain FISTA

Frequency domain FISTA:

• Start with
$$\mathbf{g}^0 = \mathbf{g}_{aux}^0 = \mathbf{d}^{(t-1)}$$
.
• Do
 $\hat{\mathbf{g}}_{aux}^j = \mathsf{FFT}(\mathbf{g}_{aux}^j)$
 $\mathbf{g}^{j+1} = \operatorname{proj}_C \left(\mathsf{IFFT}\left(\hat{\mathbf{g}}_{aux}^j - \eta \nabla \hat{\mathcal{F}}^{(t)}(\hat{\mathbf{g}}_{aux}^j)\right) \right)$.
 $\gamma^{j+1} = \left(1 + \sqrt{1 + 4(\gamma^j)^2}\right)/2$,
 $\mathbf{g}_{aux}^{j+1} = \mathbf{g}^{j+1} + \frac{\gamma^j - 1}{\gamma^{j+1}}(\mathbf{g}^{j+1} - \mathbf{g}^j)$.
• $\mathbf{d}^{(t)} \leftarrow \text{ the last } \mathbf{g}^j$.

 Background
 Online Algorithm I
 Online Algorithm II
 Numerical Results

 Technique I - forgetting factor
 Weighted loss function:

Weighted loss function:

$$\mathbf{d}^{(t)} = \operatorname*{arg\,min}_{\mathbf{d}\in\mathsf{C}} \bigg\{ \sum_{\tau=1}^{t} w^{\tau} \ell(\mathbf{d}, \mathbf{x}^{(\tau)}, \mathbf{s}^{(\tau)}) \bigg\},\$$

where the weight is:

$$w^{\tau} = (\tau/t)^p, \quad p \geq 0.$$

Proposition (Weighted central limit theorem)

Suppose $Z_{\tau} \stackrel{i.i.d}{\sim} P_Z(z)$, with a compact support, expectation μ , and variance σ^2 . Define the approximation of Z: $\hat{Z}^t \triangleq \frac{1}{\sum_{\tau=1}^t w^{\tau}} \sum_{\tau=1}^t w^{\tau} Z_{\tau}$. Then, we have

$$\sqrt{t}(\hat{Z}^t-\mu)\stackrel{d}{
ightarrow} N\Big(0,rac{p+1}{\sqrt{2p+1}}\sigma\Big), \quad \text{as } t
ightarrow\infty.$$

Technique II - stopping of FISTA

$$\left\| \mathbf{d} - \mathsf{Proj}_{\mathcal{C}} \left(\mathbf{d} - \eta \nabla \mathcal{F}^{(t)}(\mathbf{d}) \right) \right\| \leq \tau_0 / (1 + lpha t)$$

Proposition (Convergence of FPR implies convergence of iterates)

Let $(\mathbf{d}^*)^{(t)}$ be the exact minimizer of the t^{th} subproblem:

$$(\mathbf{d}^*)^{(t)} = \argmin_{\mathbf{d} \in C} \mathcal{F}^{(t)}(\mathbf{d}) \; .$$

Let $\mathbf{d}^{(t)}$ be the solution obtained with the above stopping condition. Then, we have

$$\left| \mathbf{d}^{(t)} - (\mathbf{d}^*)^{(t)}
ight\| \leq \mathcal{O}\left(t^{-1}
ight) \; .$$

With the two propositions, we prove the convergence of the whole algorithm.

• Memory cost $\mathcal{O}(M^2N)$ is still large. To reduce N:

Figure: An example: $N = 256 \times 256 \rightarrow \tilde{N} = 128 \times 128$

Boundary issue: \tilde{N} should be at least twice D in each dimension. For 2D images, $\tilde{N} \ge 2^2 D$.

In our experiment, we take $D = 12 \times 12$, $\tilde{N} = 64 \times 64$.

Online Algorithm II - Frequency-domain SGD

Recall the CDL problem:

$$\min_{\mathbf{d}\in C} \mathbb{E}_{\mathbf{s}} \Big\{ \underbrace{\min_{\mathbf{x}} \ell(\mathbf{d}, \mathbf{x}; \mathbf{s})}_{\mathbf{x}} \Big\}.$$

Projected Stochastic Gradient Descent (SGD):

$$\mathbf{d}^{(t)} = \operatorname{Proj}_{\mathsf{C}}\left(\mathbf{d}^{(t-1)} - \eta^{(t)} \nabla f(\mathbf{d}^{(t-1)}; \mathbf{s}^{(t)})\right).$$

Frequency domain SGD:

$$\hat{\mathbf{d}}^{(t)} = \operatorname{Proj}_{\mathsf{C}} \left(\mathsf{IFFT} \left(\hat{\mathbf{d}}^{(t-1)} - \eta^{(t)} \nabla \hat{f}(\hat{\mathbf{d}}^{(t-1)}; \hat{\mathbf{s}}^{(t)}) \right) \right).$$

Learning from incomplete images

Masked CDL:

$$\min_{\mathbf{d}\in\mathsf{C}}\mathbb{E}_{\mathbf{s}}[f_{\mathsf{mask}}(\mathbf{d};\mathbf{s})]\;,$$

where f_{mask} is

$$f_{\mathsf{mask}}(\mathsf{d};\mathsf{s}) \triangleq \min_{\{\mathsf{x}_m\}} \frac{1}{2} \left\| \mathcal{W} \odot \left(\sum_{m=1}^M \mathsf{d}_m * \mathsf{x}_m - \mathsf{s} \right) \right\|_2^2 + \lambda \sum_{m=1}^M \left\| \mathsf{x}_m \right\|_1$$

- W is a masking matrix, usually {0,1}-valued.
 Masking unknown or unreliable pixels.
- Online algorithm for masked CDL:

$$\mathbf{d}^{(t)} = \operatorname{Proj}_{C_{\mathsf{PN}}} \left(\mathsf{IFFT} \left(\hat{\mathbf{d}}^{(t-1)} - \eta^{(t)} \nabla \hat{f}_{\mathsf{mask}} (\hat{\mathbf{d}}^{(t-1)}; \hat{\mathbf{s}}^{(t)}) \right) \right).$$

Numerical Results

- Platform: MATLAB R2016a; 2 Intel Xeon(R) X5650 CPUs @ 2.67GHz.
- Dictionary size: $12 \times 12 \times 64$
- Signal size: 256×256 .
- Dataset: MIRFlickr25k. (Huiskes et al. 2010) 40 training images and 20 testing images.

Comparison: Convergence Speed

Figure: Convergence speed comparison on the clean data set.

Comparison: Memory Usage

Scheme	Memory (MB)	
Batch ($K = 10$)	1959.58	
Batch ($K = 20$)	3887.08	
Batch ($K = 40$)	7742.08	
Surrogate-Split	158.11	
Modified SGD	154.84	

Table: Memory Usage Comparison in Megabytes.

Learning from noisy images

(a) One of the training images. (10% positions noised)

(d) One of the training images. (30% positions noised)

(b) Results by SGD: some valid features.

(e) Results by SGD: almost no valid features.

(c) Results by masked SGD: clean features learned.

(f) Results by masked SGD: clean features learned.

Comparison with batch methods

Figure: Comparison on masked CDL problem.

Conclusions

- We have proposed two efficient online convolutional dictionary learning methods. Both of them have theoretical convergence guarantee and show good performance on both time and memory usage.
- Frequency SGD shows better performance in time and memory usage, and requires fewer parameters to tune.
- Frequency SGD can be extended to masked CDL, which learns dictionaries from imcomplete images.
- See arXiv:1709.00106 for details.
- Implementations of all of these algorithms will be made available as part of the SPORCO software library http://purl.org/brendt/software/sporco

References I

- Degraux, Kevin, Ulugbek S Kamilov, Petros T Boufounos, and Dehong Liu (2017). "Online Convolutional Dictionary Learning for Multimodal Imaging". In: arXiv preprint arXiv:1706.04256.
- Garcia-Cardona, Cristina and Brendt Wohlberg (2017). "Subproblem coupling in convolutional dictionary learning". In: *Proceedings of IEEE International Conference on Image Processing (ICIP)*.
- Gu, Shuhang et al. (2015). "Convolutional sparse coding for image super-resolution". In: *Proceedings of the IEEE International Conference on Computer Vision*, pp. 1823–1831.
- Huiskes, Mark J, Bart Thomee, and Michael S Lew (2010). "New trends and ideas in visual concept detection: the MIR flickr retrieval evaluation initiative". In: Proceedings of the international conference on Multimedia information retrieval. ACM, pp. 527–536.
 - Mairal, Julien, Francis Bach, Jean Ponce, and Guillermo Sapiro (2009). "Online dictionary learning for sparse coding". In: *Proceedings of the 26th annual international conference on machine learning*. ACM, pp. 689–696.

References II

- Šorel, Michal and Filip Šroubek (2016). "Fast convolutional sparse coding using matrix inversion lemma". In: *Digital Signal Processing* 55, pp. 44–51.
 - Wang, Yaqing, Quanming Yao, James T Kwok, and Lionel M Ni (2017). "Online convolutional sparse coding". In: *arXiv preprint arXiv:1706.06972*.
 - Wohlberg, Brendt (2016). "Convolutional sparse representations as an image model for impulse noise restoration". In: *Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), 2016 IEEE 12th.* IEEE, pp. 1–5.
 - Zeiler, Matthew D, Dilip Krishnan, Graham W Taylor, and Rob Fergus (2010). "Deconvolutional networks". In: *Computer Vision and Pattern Recognition* (*CVPR*), 2010 IEEE Conference on. IEEE, pp. 2528–2535.

Zhang, He and Vishal M Patel (2016). "Convolutional Sparse Coding-based Image Decomposition." In: *BMVC*.

Zhu, Yingying and Simon Lucey (2015). "Convolutional sparse coding for trajectory reconstruction". In: *IEEE transactions on pattern analysis and machine intelligence* 37.3, pp. 529–540.

Thanks for listening !