

FULLY AUTOMATED HIGHLY ACCURATE 3D RECONSTRUCTION FROM MULTIPLE VIEWS

Thomas Ebner, Oliver Schreer, Ingo Feldmann Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI

(1) Introduction

(3) **Reconstruction results**

- Highly accurate 3D reconstructions of real-world objects are more and more important in various fields of application, e.g. for realistic scenes of architectural sites in virtual museums
- Algorithmic pipeline from input images to output 3D model
- Core component: dense depth based 3D surface reconstruction
- Main objective: high degree of automation and reconstruction accuracy

(2) Fully automated pipeline

- Input: set of images capturing the object from different views
- Initial 3D point cloud and calibration parameters by applying VisualSFM^[1] and SIFT on GPU^[2]
- Automatic pairwise camera pre-selection for robust depth estimation by considering the constraints *Compactness*, *Suitability*, and *Coverage*
- Initial depth map generation by extracting visibility information from SFM output
- Depth refinement by applying the highly accurate Patch-Sweeping algorithm^[3]
- Depth map fusion by applying the visibility-driven patch group generation^[4]
- Output: high-resolution 3D model

Verification of the reconstruction accuracy using several reference data sets, e.g. fountain-P11^[5]

Original image (left) and 3D reconstruction (right) of fountain-P11

- Comparison of the reconstruction quality with several reference methods, e.g. the Patch-based Multi-view Stereo Software (PMVS)^[6]
- Significant improvement of visual quality and geometric details compared to PMVS method

 more geometric details in the surface of the bricks and the fountain

• border area on the right-

Algorithmic architecture of proposed approach: commonly available approaches (dark green) and our proposed extension (light green) for 3D surface reconstruction

(4) Comparison with state-of-the-art software

Evaluation of several professional tools available on the market

Individual pros and cons regarding automation and performance

Autodesk ReMake ^[7]	Our Approach	Agisoft PhotoScan ^[8]
 supports only JPEG images 	+ supports several image formats	+ supports several image formats
+ visual quality of reconstructed object	+ visual quality of reconstructed object	 + visual quality of reconstructed object
 coarse geometry, details mainly through texture 	+ highly accurate and dense geometry	+ highly accurate and dense geometry
+ meshes usually watertight	+ meshes usually watertight	 meshes often contain holes
+ fully automated	+ fully automated	 semi-automated
+ easy-to-use workflow	+ easy-to-use workflow	 complicated workflow
+ good background segmentation	+ good background segmentation	 manual masking recommended
 manual parameter adjustments not possible 	+ manual parameter adjustments possible	+ manual parameter adjustments possible

3D model of fountain-P11 data set reconstructed with *PMVS reference method (left) and our approach (right)*

Autodesk ReMake

Our Approach

Agisoft PhotoScan

Comparison of reconstruction details of Arco Valentino in Torino

hand side of the wall with higher quality and less artefacts

Comparison of most significant Pros (+) and Cons (–)

Autodesk ReMake

Agisoft PhotoScan

Comparison of reconstruction details of the Statue of Goethe in Berlin

[1] Wu, C., "VisualSFM: A visual structure from motion system," 2011.

- [2] Wu, C., "SiftGPU: A GPU implementation of scale invariant feature transform (SIFT)," 2007.
- [3] Waizenegger, W., Feldmann, I. and Schreer, O., "Real-time Patch Sweeping for High-Quality Depth Estimation in 3D Videoconferencing Applications," IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 2011.
- [4] Ebel, S., Waizenegger, W., Reinhardt, M., Schreer, O. and Feldmann, I., "Visibility-driven patch group generation," IEEE International Conference on 3D Imaging (IC3D), 2014.

thomas.ebner@hhi.fraunhofer.de www.hhi.fraunhofer.de [5] Strecha, C., von Hansen, W., Van Gool, L., Fua, P. and Thoennessen, U., "On benchmarking camera calibration and multi-view stereo for high resolution imagery," IEEE Conference on CVPR, Anchorage, AK, 2008. [6] Furukawa, Y. and Ponce, J., "Accurate, dense, and robust multiview stereopsis," IEEE transactions on pattern analysis and machine intelligence, Vol. 32, No. 8, pp. 1362-1376, 2010.

[7] Agisoft PhotoScan (v1.3.0), http://www.agisoft.com [8] Autodesk ReMake (v17.25.0.16), http://remake.autodesk.com

Fraunhofer Heinrich Hertz Institute