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Background of RGB-D data:
The acquisition of RGB-D data：

Early range sensors (such as 
Konica Minolta Vivid 910, Faro 
Lidar scanner, Leica C10 and 
Optech ILRIS-LR) 
Disadvantages: 
They are expensive and difficult to 
use for researchers in a human 
environment. No much follow-up 
research at that time.

Recently:

With the release of the low-cost 3D 
Microsoft Kinect sensor1 on 4th 
November 2010, acquisition of RGB-D 
data becomes cheaper and easier.

Then:
The investigation of computer vision 

algorithms based on RGB-D data has 
attracted a lot of attention in the last 
few years.
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Examples of RGB-D data:

RGB data and depth data：

Pixel value: the 
distance from the 
camera to the 
object
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RGB-D DATA FUSION：

Many RGB-D fusion methods have been proposed to extract 

RGB-D features.

K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view rgb-d object 

dataset. In IEEE International Conference on Robotics and Automation (ICRA), 

pages 1817–1824, 2011.

R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng. Convolutional-recursive 

deep learning for 3d object classification. In Neural Information Processing 

Systems, pages 665–673, 2012.

S. Song and J. Xiao. Deep sliding shapes for amodal 3d object detection in rgb-d 

images. 2016.

…



21/09/2017 © The University of Sheffield

Some methods just learn features from RGB and depth separately 

and then simply concatenate them together as RGB-D features or 

encode these two kinds of features, which cannot explore the 

correlation between the RGB pixels and their corresponding depth 

pixels.

Limitations:

The correlation and complementary property between RGB and 

depth are ignored.
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Our method:

To better explore the correlation between the RGB pixel and the 

corresponding depth pixel, and take advantage of the 

complementary property, we first project raw RGB-D data into a 

complex space and then jointly learn features from the fused 

RGB-D images. The correlated and individual parts of the RGBD 

information in the new feature space are well combined.
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The flow chart shows the difference 

between our fusion method and 

some traditional fusion methods.

Motivation：
Our fusion method can also be 

considered as representing the 

data closer to the nature

of the data. 

1) In physics, the range data correspond to the phase change and 

color information corresponds to the intensity.

2) From computer vision view, the feature representations are 

expected to satisfy low mutual information and also show a lot of 

variations. The fused RGB-D data should be treated holistically.
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Beyond this, we also modify the classical SIFT into complex 

valued SIFT (C-SIFT) to evaluate our fusion method. It is worthy to 

note that C-SIFT is just an example to show the advantages of the 

fusion method. CNNs, DBNs or other methods can be introduced 

into complex space as well.

C-SIFT：
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Fusion Methodology：

RGB image can be considered as amplitude measurements, 

which depends on the nature illumination, e.g. , sun light. 

According to depth images, the pixel values of the depth images 

always mean the distance from the camera to the observed 

objects. The depth image is often considered as the phase 

change measurement, which depends on the measured scattering 

received from the active illumination with the sensor, e.g. , laser.

The phase can be regarded as actual distance.

We define IR(x,y) as the RGB image, 

ID(x, y, d) as the depth image,

where d = d(x, y) , x  and y  are the image coordinate

points, d is the depth value on the coordinate (x, y) .
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The fused complex-valued image function is expressed 

as:

where phase 

Moreover, with the representation of complex number, the 

fused complex valued image can be represented as Polar 

representation and Cartesian representation:
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Since we normalize all complex-valued images,

we can obtain max | f| = 1.
RGB Gray Depth Fusion Fusion 3D
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Some random example

images from 8  different 

scenes which include 

computer room, bedroom, 

classroom, dining room, 

kitchen, furniture room, 

lecture room and restroom 

from top to bottom.

Note that all the RGB 

images mentioned in our 

methodology are first 

converted into gray 

images.
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Comparison：

The comparison among the representations (RGB images, 

depth Images, fused RGB-D Polar representations and  

fused RGB-D Cartesian representations) from three aspects:

1）Mutual Information and Independence

2）Feature Distribution

3）Euclidean KS-distance to Uniformity

The fused RGB-D Cartesian representation is the optimal

image representation among the four image representations.
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Complex-valued SIFT：

In this section, we modify classical SIFT into complex-valued SIFT 

(C–SIFT).

In the local extrema detection step, different from SIFT which 

detects the local extrema through comparing its 26 real-valued 

neighbors, Complex-valued SIFT chooses to compare the module 

m among these neighbors.

The module can be calculated as：

It can make sure that the color information and the depth 

information are all considered when choosing the keypoints.
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Experimental Setup

Datasets：
NYU Depth V1 dataset and SUN RGB-D dataset

We hope to show the advantages of our fused method under the 

same conditions without the influence from the methodological 

difference.



21/09/2017 © The University of Sheffield

Experimental results:

Accuracies (%) for scene classification on NYU Depth V1 and 

SUN RGB-D datasets.

For the deep features, we use the NYU depth V2 RGB-D dataset 

with more than 200 K frames from the 249  training video scenes 

for learning the fused images initial AlexNet. Then we fine-tune 

the fused images from NYU Depth V1 and SUN RGB-D on this 

initial model, to extract the features of the fc-7 layer.



21/09/2017 © The University of Sheffield

Scene classification performance 

on NYU Depth v1and SUN RGB-D 

datasets with different dictionary 

sizes.

Confusion matrices about 

our fusion method results

on NYU Depth V1 and SUN 

RGB-D datasets.
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Conclusion

A new RGB-D fusion method for fusing RGB-D images is 

proposed, which can better reveal the correlation between the 

RGB pixels and the depth pixels, taking advantage of the 

complementary property. The experimental results show that our 

method achieves competing performance against the classical 

fusion methods.
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Future Work：

We hope CNNs, DBNs or other methods can be introduced into 

complex space as well.

One recent work：

Trabelsi, C., Bilaniuk, O., Serdyuk, D., Subramanian, S., Santos, J. 

F., Mehri, S., Rostamzadeh, N., Bengio, Y., and Pal, C. J. (2017). 

Deep complex networks.
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Take CNNs for example：

A complex valued CNN model can be built with complex input and 

weights.

1. The optimization method for this network should be handled. 

2. Back propagation algorithm can also be modified.

3. The loss function is real-valued with complex weights in the 

complex case, which cannot be differentiable everywhere. (e.g. 

Wirtinger derivatives)

4. The labels are real-valued. (e.g. a projection layer can be 

added as a special case of an activation function layer)
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