Adaptive interpolated motion compensated prediction

Wei-Ting Lin, Tejaswi Nanundaswamy, Kenneth Rose

Signal Compression Lab

University of California Santa Barbara

Block-based motion compensation

Frame: n-1

Frame: n

Block-based motion compensation

Target

Prediction

Motivation

- Pixel domain block matching to optimize RD cost Pixels in a block move uniformly
 - Motion vector do not necessarily represent the actual motions
 - The influence of a motion vector is restricted within a rectangular block
- We propose to break free the restriction by explicitly treating motion vectors as pointers to multiple estimation sources
 - Using multiple observations to estimate a pixel (based on the nearby motion vectors)
 - Deriving K sets of optimal linear estimation coefficents for predicting each pixel

Prediction Model

- Use the four closest motion vectors to obtain multiple estimations for each block
- Form the best linear predictor based on the estimations

Grid of motion vectors

Prediction Model

- Use the four closest motion vectors to obtain multiple estimations for each block
- Form the best linear predictor based on the estimations

Grid of motion vectors

$$\tilde{x}_k(\boldsymbol{s}) = \sum_{m=1}^4 w_m^q(\boldsymbol{s}) \hat{x}_{k-1}(\boldsymbol{s} - \boldsymbol{v}_m)$$

 $= \boldsymbol{w}^q(\boldsymbol{s})^T \widehat{\boldsymbol{x}}_{k-1}(\boldsymbol{s})$

 $\tilde{x}_k(s)$: Prediction of the pixel s in the frame k $\hat{x}_k(s)$: Reconstructed pixel s in the frame k

 $w_m^q(s)$: The *q*th set of prediction coefficients for prediction corresponding to the pixel *s* and the motion vector

Basic Prediction Coefficient Design

Initialize K sets of coefficients

Classify blocks into K clusters in which prediction error is minimized

$$q = \arg\min_{r \in 0, \dots, K-1} \sum_{\boldsymbol{s} \in B} (x_k(\boldsymbol{s}) - \boldsymbol{w}^r(\boldsymbol{s})^T \widehat{\boldsymbol{x}}_{k-1}(\boldsymbol{s}))^2$$

Optimize the coefficients for each cluster C_{α} to minimize prediction error

$$\boldsymbol{w}^{q}(\boldsymbol{s}) = \arg\min \sum_{B_{i,j} \in C_{q}} \sum_{\boldsymbol{s} \in B_{i,j}} (\boldsymbol{x}_{k}(\boldsymbol{s}) - \boldsymbol{w}^{q}(\boldsymbol{s})^{T} \widehat{\boldsymbol{x}}_{k-1}(\boldsymbol{s}))^{2}$$

Refined Prediction Coefficients Design

- Designing coefficients to minimize prediction does not guarantee better reconstruction due to quantization
- We need to design the prediction coefficients accounting for the reconstruction error. The target function can be written as

$$J = \sum_{B_n \in C_q} \sum_{s \in B_n} \left(x_n(s) - \tilde{x}_n^{(t)}(s) - \hat{e}_n^{(t)}(s) \right)^2 \qquad \hat{e}_k(s): \text{ quantized prediction residual}$$

Given the discrete nature of quantization, the above function is piecewise continuous in the prediction coefficients. Sufficiently small changes in the coefficient values will only affect the reconstructed value through the prediction term

Prediction Coefficient Update Algorithm

PSNR improvement (in dB) versus iterations of the proposed K-mode clustering algorithm for different target bit rate regions.

Example Sets of Coefficients

The values of coefficients increase when approaching the motion vectors

Allow us to capture the significance of predictions due to neighboring motion vectors

Wei-Ting (SCL, UCSB)

Motion Refinement for Interpolated Prediction

- Motion vectors are optimized independently without considering the interpolation
- Motion update:
 - 1. Calculate the optimal mode for each block $B_{i,j}$ given the motion vectors
 - 2. Fix the modes and $B_{i,j}$'s neighboring block's motion vectors; run motion search to minimize the RD cost

Experimental Results

Prediction quality improvement

Original Prediction

Interpolated Prediction

Experimental Results

• Side by Side Comparison

Original Prediction

Target:

Interpolated Prediction

Experimental Results

- Codebase: VP9
- Coding Structure:
 - IPPP with only the previous frame allowed as reference for inter prediction
 - No intra blocks in inter frame
 - 16x16 fixed block

Sec	quence	BD-rate Reduction	
		Without motion refinement	With motion refinement
For	eman	11.174	11.316
Bus	6	13.783	14.455
lce		6.213	6.863
Hig	hWay	9.500	9.969
BQ	Mall	7.804	7.891
Vid	yo4	3.973	4.011
Cro	wdRun	9.068	9.266
Baske	etBallDrive	7.746	7.937
Ave	erage	8.658	8.964