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UAV navigation: creating a smarter city

• Autonomous navigation in large-scale unknown complex environment
• Drone delivery: delivering goods in cities, emergency treatment

• Anti-terrorism: remote investigation, military strike
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Challenges of large-scale unknown complex 
environment

Environment covers 

several square 

kilometers

Environment is 

totally stochastic
Obstacles are dense

Large-scale Unknown Complex

More intelligent algorithms need to be developed to cope with more complex environment

Hard-coded path planning is intractable  

SLAM-based navigation is intractable

Sensing-and-avoidance-based navigation is inefficient

SLAM, simultaneously Localization and Mapping, is generally used to navigate and localize in indoor environment

Sensing-and-avoidance is already used by Amazon to deliver goods in countryside 
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Modeling UAV navigation as a reinforcement 
learning problem

Observing environment Taking proper action

Observing environmentTaking proper action
……

UAV navigation: a sequential decision making problem

Reinforcement Learning:  learning to solve sequential decision making

State: st sensory output

Action: at control profile

Dynamic: p(st+1|st,at) unknown but stationary

Reward: p(rt|st,at)          need to be designedMarkov Decision Process
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State profile and action profile

GPS to obtain the distance between target and present 

position of UAV

gyroscope to obtain the first-perspective direction of UAV

Other sensors to sense local environment, such as range 

finders to sense obstacles

gyroscope to obtain the first-perspective direction of UAV

State profile

Action profile

• Deep reinforcement directly takes high-dimensional sensory outputs 
as states[1]
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Reward

• Sparse reward
• Agent would be rewarded only if it arrives at the target position

• Non-sparse reward
• Agent would be rewarded whenever and wherever

Target reward

Obstacle penalty

Free space reward

Transition penalty

Rewarded if UAV approaches the target

Penalized if UAV approaches any obstacles

Rewarded if UAV’s first perspective points to free space

Penalized as long as UAV moves forward
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Partial observability of states 

• Random environment

• Limited sensing capability

• Memoryless learning agent

Agent’s action should be determined by its history observation and action trajectories

obstacle obstacle obstacle

crash down arrived

target target

Random environment Limited sensing capability
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Attacking partial observability

• Policy function: projecting history trajectories to actions

• Define value function and action-value function as
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Attacking partial observability

• Define target function as

• Gradient of the target function

• Deterministic policy
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Partially observable VS fully observable

• Gradient of the target function of fully observable MDP

• Gradient of the target function of partially observable MDP
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POMDPs can be regarded as MDPs nominally
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Algorithm design: Fast-RDPG

• Fast-RDPG: Fast-Recurrent Deterministic Policy Gradient
• Is based on existing algorithm named RDPG

• Use Actor-Critic policy gradient architecture

• Use two LSTMs to approximate Q(h,a) and μ(h)

• RDPG VS Fast-RDPG
• RDPG lacks of theoretical guarantee

• Fast-RDPG breaks the temporal correlation of samples
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Generating stochastic environment

In each environment, the height of the building is random

Every time the UAV 

completes a 

navigation task, the 

environment is re-

generated randomly
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Sensors deployment

• UAV flies at fixed level and at constant speed

• Observations are composed of four parts

Obstacle Obstacle
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Simulation result: RDPG VS Fast-RDPG

• Compared with RDPG, Fast-RDPG breaks the temporal correlation 
of samples and therefore converges very fast

Fast-RDPG

RDPG
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Simulation results: DDPG VS Fast-RDPG

Randomly generate four pairs of starting points and ending points

Navigation trajectories of Fast-RDPGNavigation trajectories of RDPG

Limited sensing capacity

Memoryless agent

Stochastic environment

Navigation mission failed
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Conclusion and future work

Proposed autonomous navigation of UAV with deep reinforcement learning
 Model UAV navigation as a sequential decision making problem

 Use deep reinforcement learning to solve the decision making problem

 Design Fast-RDPG algorithm to attack Partially observable MDP 

Large-scale unknown complex environment brings challenges to UAV navigation
 Highly complex environment disables traditional navigation methods

 Navigation agents need to learn to cope with complex environment

Future work
 Test the proposed navigation algorithm in more real environment

 Directly cope with sparse reward
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Q&A

• Thank you very much!


