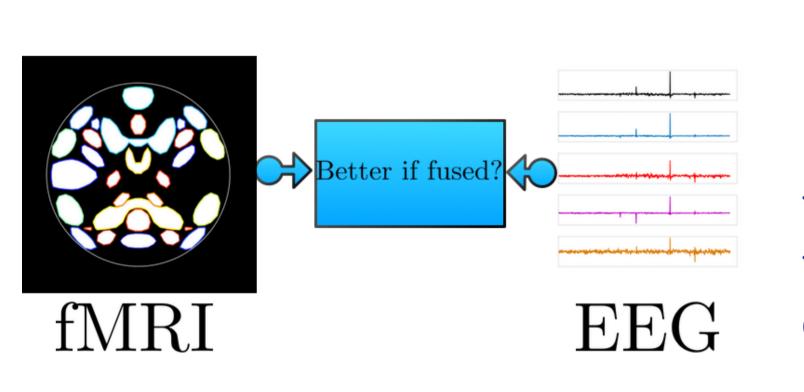


Goal: measure linear relationship among variables \rightarrow can use correlation

Challenges: data can be privacy-sensitive

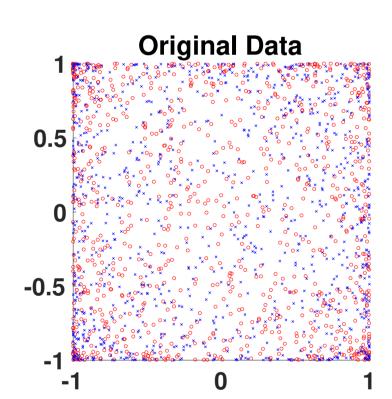
- \rightarrow how to guarantee privacy?
- \rightarrow what is the best correlation metric?
- \rightarrow how to measure it?

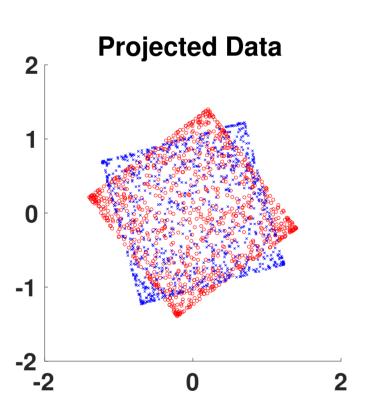


Is there a privacypreserving way to compute the best correlation index?

Canonical Correlation Analysis (CCA)

CCA finds subspaces for different "views" of data \rightarrow "views" are maximally correlated after projection





Can we have a CCA algorithm that preserves privacy and also provides good utility?

Problem Formulation

$ ightarrow$ variables or γ	views: $\mathbf{X} \in \mathbb{R}^{D_x imes N}$ and $\mathbf{Y} \in \mathbb{R}^{D_y imes N}$
\rightarrow goal: find subspaces $\mathbf{U} \in \mathbb{R}^{D_x \times K}$ and $\mathbf{V} \in \mathbb{R}^{D_y \times K}$	
ightarrow how?: solve the following optimization problem [1]	
$\underset{\mathbf{U},\mathbf{V}}{minimize}$	$\ \mathbf{U}^{\top}\mathbf{X} - \mathbf{V}^{\top}\mathbf{Y}\ _F^2$
	$\frac{1}{N}\mathbf{U}^{\top}\mathbf{X}\mathbf{X}^{\top}\mathbf{U} = \mathbf{I}, \frac{1}{N}\mathbf{V}^{\top}\mathbf{Y}\mathbf{Y}^{\top}\mathbf{V} = \mathbf{I},$
	$\frac{1}{N}\mathbf{U}^{\top}\mathbf{X}\mathbf{Y}^{\top}\mathbf{V} = \mathbf{I}.$
Closed-form solution exists: [3]	
• $\mathbf{U} \leftarrow the top\text{-}K$ eigenvectors of $\mathbf{C}_{xx}^{-1}\mathbf{C}_{xy}\mathbf{C}_{yy}^{-1}\mathbf{C}_{yx}$	
• $\mathbf{V} \leftarrow the top\text{-}K$ eigenvectors of $\mathbf{C}_{yy}^{-1}\mathbf{C}_{yx}\mathbf{C}_{xx}^{-1}\mathbf{C}_{xy}$	

DIFFERENTIALLY-PRIVATE CANONICAL CORRELATION ANALYSIS

Hafiz Imtiaz and Anand D. Sarwate

Rutgers University

Differential Privacy (DP)

Differential privacy is *formal* and quantifiable

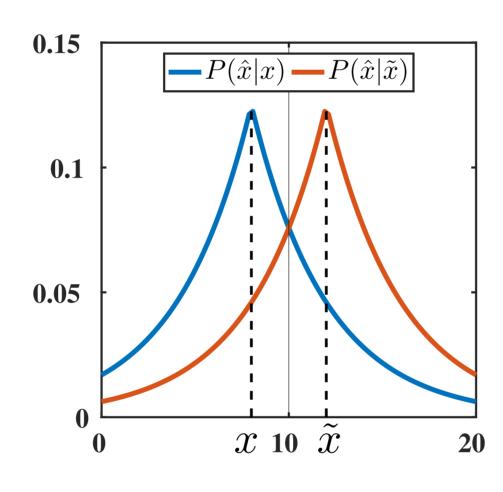
Definition: Algorithm $\mathcal{A}(\mathbb{D})$ taking values in a set \mathbb{T} provides (ϵ, δ) -differential privacy if [2]

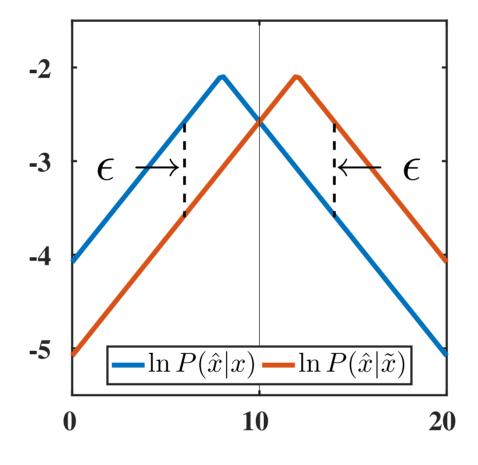
 $P(\mathcal{A}(\mathbb{D}) \in \mathbb{S}) \le e^{\epsilon} P(\mathcal{A}(\mathbb{D}') \in \mathbb{S}) + \delta,$

for all measurable $\mathbb{S} \subseteq \mathbb{T}$ and all *neighboring* data sets \mathbb{D} and \mathbb{D}' differing in a single entry.

Interpretation:

• $(\epsilon, \delta) \downarrow \Rightarrow$ privacy level $\uparrow \equiv$ noise level $\uparrow \Rightarrow$ utility \downarrow





Algorithm: Differentially-private CCA

Input:

- 0-centered samples X and Y as $\mathbf{Z} = [\mathbf{X}; \mathbf{Y}]; \|\mathbf{z}_n\|_2 \leq 1$
- privacy parameters ϵ_o, δ
- . Compute $\mathbf{C} \leftarrow \frac{1}{N} \mathbf{Z} \mathbf{Z}^{\top}$
- 2. Generate $D \times D$ symmetric matrix E [2]:
- $\{E_{ij}: i \in [D], j \leq i\}$ drawn i.i.d. $\sim \mathcal{N}(0, \tau^2)$
- $\tau = \frac{\sqrt{2}}{N\epsilon_{\star}} \sqrt{2\log\left(\frac{1.25}{\delta}\right)}$

•
$$E_{ij} = E_{ji}$$

- 3. Compute $\mathbf{C} \leftarrow \mathbf{C} + \mathbf{E}$
- 4. Extract sub-matrices from C according to:

$$\hat{\mathbf{C}} = \begin{bmatrix} \hat{\mathbf{C}}_{xx} & \hat{\mathbf{C}}_{xy} \\ \hat{\mathbf{C}}_{xy}^\top & \hat{\mathbf{C}}_{yy} \end{bmatrix}$$

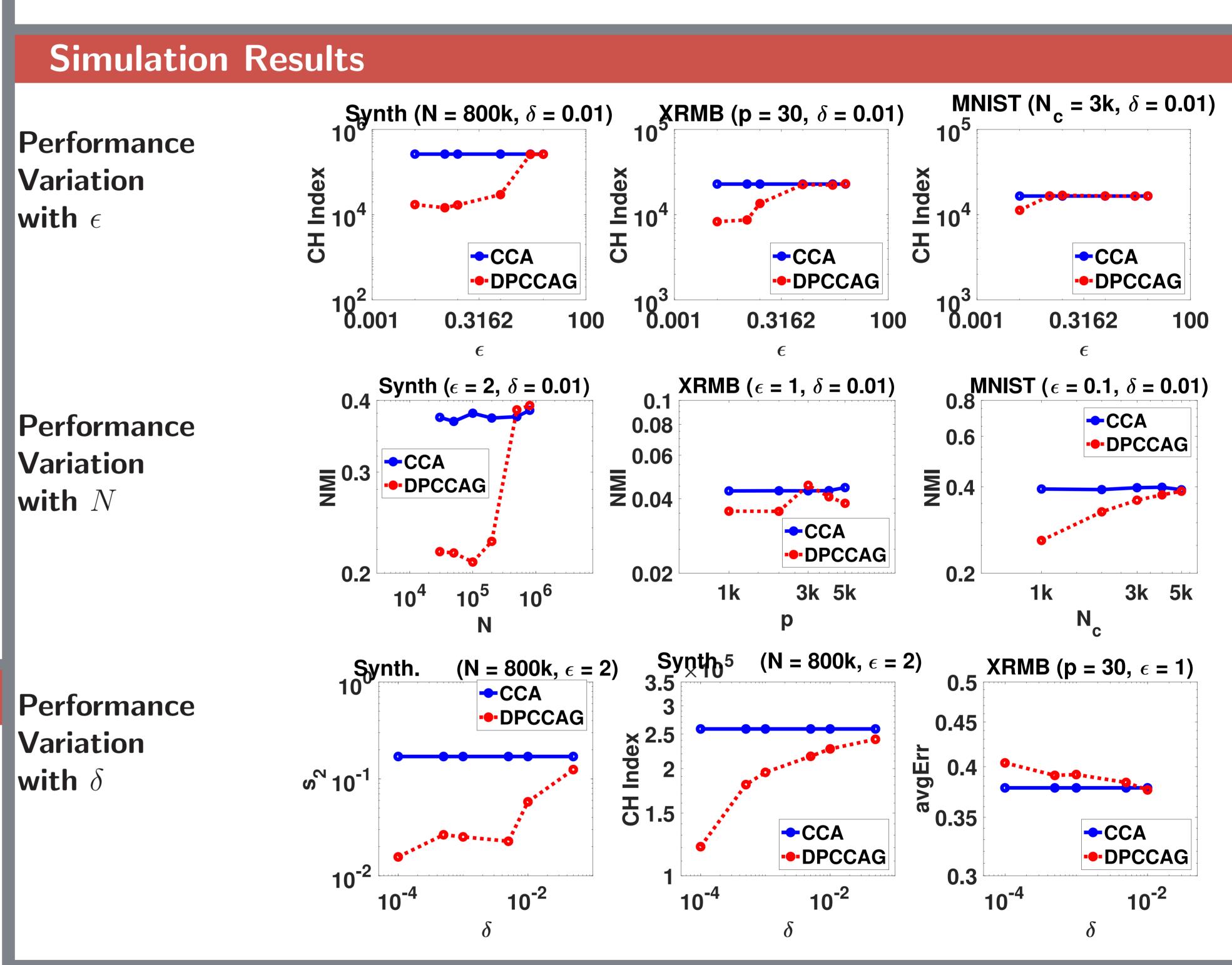
Output:

• Differentially-private approximates: $\hat{\mathbf{C}}_{xx}$, $\hat{\mathbf{C}}_{yy}$ and $\hat{\mathbf{C}}_{xy}$

Using $\hat{\mathbf{C}}_{xx}$, $\hat{\mathbf{C}}_{yy}$ and $\hat{\mathbf{C}}_{xy}$, we can compute the subspaces ${\bf U}$ and ${\bf V}$

Some Remarks

- Analyze Gauss (AG) algorithm: input perturbation on 2nd-moment matrix [2]
- DP is post-processing invariant \Rightarrow computation of U and V is (ϵ_o, δ) -DP
- However, projection/clustering do not satisfy DP \Rightarrow can be modified at the cost of utility



Conclusion and Future Works

Remarks:

- for fixed ϵ (privacy level): more samples \rightarrow better performance
- for fixed N (sample size): higher $\epsilon \rightarrow$ better performance
- **observation**: the proposed algorithm can achieved meaningful utility even with strict privacy

References

[1] Hotelling, H. (1936). Relations Between Two Sets of Variates. Biometrika, 28(3/4), 321-377. doi:10.2307/2333955 [2] Dwork, C. et al. (2014). Analyze Gauss: Optimal Bounds for Privacy-preserving Principal Component Analysis. 46-th Annual ACM Symposium on Theory of Computing. doi: doi.org/10.1145/2591796.2591883 [3] Hardoon, D. R. et al. (2004). Canonical Correlation Analysis: An Overview with Application to Learning Methods. Neural Comput. doi: doi.org/10.1162/0899766042321814

Future directions:

- novel utility bounds
- validation on high-dimensional real

- data (multi-modal location data) multi-view learning in neuroimaging
- (fMRI/EEG)