ARTERY/VEIN CLASSIFICATION IN FUNDUS IMAGES USING CNN AND LIKELIHOOD SCORE PROPAGATION

Fantin Girard and Farida Cheriet

Liv4D, Polytechnique Montreal

fantin.girard@polymtl.ca

MOTIVATION

- Changes in blood vessels occur with many pathologies
- Retina imaging through digital fundus camera allow a noninvasive access to the vessels
- Changes on the arteries are different from those on the veins according to the pathologies

MOTIVATION

- One measure used to track these vessel changes is the arterio-venous diameter ratio.
- Calculated only around the optic disc
- It is correlated with risk of coronary artery disease, hypertension, cholesterol level, progression of retinopathy and smoking [1].
- →Could a global measure be more indicative of vessel changes?

[1] R.Klein, B.K.Klein, and S.E.Moss, "The relation of retinal vessel caliber to the incidence and progression of diabetic retinopathy: Xix: the Wisconsin epidemiologic study of diabetic retinopathy," Archives of Ophthalmology, vol. 122, no. 1, pp. 76–83, 2004.

STATE OF THE ART

- Mainly machine learning techniques with color, intensity features locally classify pixels into arteries/veins
- ... followed by a graph-based method that improve pixel classification using global topology rules of the vascular tree [1,2]

\rightarrow no deep learning methods to date

[1] B. Dashtbozorg, A. M. Mendona, and A. Campilho, "An automatic graph-based approach for artery/vein classification in retinal images," IEEE Transactions on Image Processing, vol. 23, no. 3, pp. 1073–1083, 2014.

[2] R. Estrada, M. J. Allingham, P. S. Mettu, S. W. Cousins, C. Tomasi, and S. Farsiu, "Retinal artery-vein classification via topology estimation," IEEE Transactions on Medical Imaging, vol. 34, no. 12, pp. 2518–2534, Dec 2015.

SUMMARY OF THE METHODOLOGY

DATASET ANNOTATION

📙 Q Q 23 🖪 III 🤃 🖸 🔇 📏 🖉 🚣 🗐			
			List of Branches 6 ×
			Ranch Transparency.
ng Vein Tree	🗗 🗙 Corresponding Art	tery Tree	8 ×

CNN MODEL

- Central pre-segmented vessels pixel in the patch is classified as artery or vein
- 4 Convolutional Layers
- ADAM stochastic gradient descent

 Six channels input (3 RGB channels + 3 RGB normalized channels)

TRAINING STRATEGIES

• 6 channels input : Normalized channels

$$I_{norm} = \frac{I - median(I)}{\sigma_I} * \sigma_0 + 128$$

 Data augmentation: Rotation and PCA augmentation
→ For medical application: have to be the most realistic

LIKELIHOOD SCORE PROPAGATION

- Graph-based method that propagates initial CNN labeling through the vasculature
- → use of global topology of the retinal vessels network
- Every branch (nodes) is connected to all the branches. the edge is connected to the cost (position and label cost)

LIKELIHOOD SCORE PROPAGATION

- For efficiency, the graph is simplified into its minimal spanning tree
- Traversing the tree twice to propagate the scores
 - First each child give its label attenuated by the position cost

$$s_{i} = s_{i} + \sum_{b_{i} \setminus P(b_{j}) = b_{i}} \exp \frac{c_{pos}(b_{i}, b_{j})}{\sigma_{prop}} s_{j}$$

• Then each parent gives the remaining label propagation to its children

$$s_j = s_j + \exp \frac{c_{pos}(b_i, b_j)}{\sigma_{prop}} \left[s_i - s_j \exp \frac{c_{pos}(b_i, b_j)}{\sigma_{prop}} \right]$$

DATA AND PARAMETERS

- Training data
 - 20 images from DRIVE
 - 70 images from MESSIDOR
 - = 1 500 000 128x128 patches
 - 10% training data as validation set

- Test data
 - 2 ground truth set for the 20 test images of DRIVE (centerline CT-DRIVE and all pixels ALL-DRIVE)
 - 30 images from MESSIDOR
- Each training stopped after 50 epochs
- Empirical strategy to select the model

RESULTS

- Better results than the state of the art
- Still need a graph propagation as CNN labeling remains local
- Dataset Method Sensitivity Specificity CNN + LSP93.6% + 5%93.1% + 6%TE*[1] 91.7% + 7%91.7% + 7%CT-DRIVE LDA+GTR*[2] 90.0% 84.0% CNN $86.0\% \pm 4\%$ $83.8\% \pm 9\%$ kNN[3] 80.0% 80.0% CNN + LSP92.3% 93.1% ALL-DRIVE CNN 90.9% 87.6% CNN + LSP90.6% 97.6% MESSIDOR CNN 88.8% 91.8%

*TE = Topology Estimation [1]; *GTR = Graph Topology Rules [2]

• LSP improve the most on smallest vessels

Dataset	Method	Accuracy for diameter (in pixels)			
		1	2 to 4	5 to 10	> 10
ALL-DRIVE	CNN + LSP CNN	75.2% 55.0%	78.9% 73.4%	94.0% 91.9%	99.3% 97.3%

[1] R. Estrada et al., "Retinal artery-vein classification via topology estimation," IEEE Transactions on Medical Imaging, 2015.

[2] B. Dashtbozorg et al., "An automatic graph-based approach for artery/vein classification in retinal images," IEEE Transactions on Image Processing, 2014.
[3] M. Niemeijer et al., "Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs," IEEE Trans Med Imaging, 2011

RESULTS

• Results

- ROC curves
 - 6D input > 3D input
 - LSP can propagate errors as well
 - → best improvement near the error equal rate

- Deep learning techniques demonstrate really good accuracy for artery/vein classification
- Where local information is poor, a global graph-based method still improve the CNN labeling (here our fast LSP method)
- Future works:
 - get rid of the graph-based method \rightarrow need for more labeled data
 - → using our CNN pretrained model, learn with more data with semisupervised CNN variant like adversarial networks
 - \rightarrow feed the CNN with a larger patch

QUESTIONS

fantin.girard@polymtl.ca

