A Linear Regression Framework For Assessing Time-Varying Subjective Quality in HTTP Streaming

Nagabhushan Eswara IIT Hyderabad November 14, 2017

1

Introduction

- Increased mobile data traffic¹: Data traffic growth of 63% in 2016 and is estimated to increase 7-fold between 2016 and 2021
- Exorbitant rise in video traffic¹: 60% of total mobile data traffic in 2016 and is estimated to increase 9-fold between 2016 and 2021
- More than three-fourths of the world's mobile data traffic will be videos by 2021¹
- > Need for *careful* and *efficient* design of networks for video streaming

¹Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021.

HTTP Streaming

DASH: the ISO standard developed by MPEG for video streaming over HTTP-based networks

Figure: DASH Framework²
Rate adaptation - a key feature of DASH

²Iraj Sodagar, "The MPEG-DASH Standard for Multimedia Streaming Over the Internet", *IEEE MultiMedia*, vol.18, no.4, pp. 62-67, October-December 2011.

Time-Varying Quality

- Rate adaptation leads to the time-varying quality (TVQ)
- > TVQ affects the quality-of-experience (QoE) of users
- QoE is defined as the overall acceptability of an application or service, as perceived subjectively by the end user³
- Continuous monitoring of TVQ is essential in HTTP streaming for QoE maximization
- Need to quantify the dynamic perceptual TVQ, also known as the time-varying subjective quality (TVSQ)

³"Quality of Experience Requirements for IPTV Services", document *ITU-T G.1080*, Dec. 2008.

Network based measurements as TVQ proxies - video bitrate, user throughput etc.

Network based measurements as TVQ proxies - video bitrate, user throughput etc.

Q: Which of these video clips has got a better quality?

Network based measurements as TVQ proxies - video bitrate, user throughput etc.

A: Both video clips have an average bitrate of 250kbps!

Network based measurements as TVQ proxies - video bitrate, user throughput etc.

A: Both video clips have an average bitrate of 250kbps!

Clearly, network based TVQ measures fail to capture the perceptual TVQ

Measuring TVSQ

- > Video quality assessment (VQA) is the basis for measuring TVSQ
- A good number of VQA metrics proposed in the literature, broadly categorized into 3 categories
 - Full-Reference (FR)
 - Reduced-Reference (RR)
 - No-Reference (NR)
- Using VQA, we propose a framework for measuring TVSQ based on linear regression

Proposed Framework for TVSQ Prediction

Figure: The proposed linear regression framework for TVSQ prediction

- Short Time Subjective Quality (STSQ): Current STSQ(t) evaluated using an efficient VQA metric
- > Past TVSQs: TVSQ(t-1), TVSQ(t-2), \cdots TVSQ(t-*m*)
- ➤ m represents the feedback order for TVSQ prediction

Selection of Feedback Order

- ▶ The correlation between STSQ and TVSQ on LIVE QoE⁴ database is 0.61!
- > Boost in the correlation performance with TVSQ feedback
- ➢ No significant improvement beyond II order feedback (*m*=2)

Figure: Significance of different feedback orders illustrated in terms of LCC.

⁴C. Chen, L. K. Choi, G. de Veciana, C. Caramanis, R. W. Heath, and A. C. Bovik, "Modeling the time-varying subjective quality of http video streams with rate adaptations", *IEEE Transactions on Image Processing*, vol. 23, no. 5, pp. 22062221, May 2014.

RR-TVSQ

- Using the framework, we propose a RR method for predicting TVSQ called RR-TVSQ
- ➢ In RR-TVSQ, we employ STRRED⁵ for computing STSQ
- STSQs can be pre-computed and be made available to video users apriori to facilitate TVSQ evaluation
- However, availability of the reference video may not be guaranteed in some scenarios

⁵R. Soundararajan and A. C. Bovik, "Video quality assessment by reduced reference spatio-temporal entropic differencing", *IEEE Transactions on Circuits and Systems for Video Technology,* vol. 23, no. 4, pp. 684694, Apr. 2013.

No-Reference TVSQ

- Using the framework, we also propose a NR method for predicting TVSQ called C3D-TVSQ
- We employ a pre-trained 3D convolutional neural network C3D⁵ to extract spatio-temporal features from the video

Input spatio-temporal resolution = 171×128×16 (width×height×frames)
4096-dimensional feature vector

⁶D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, "Learning spatiotemporal features with 3d convolutional networks", in *Proc. IEEE International Conference on Computer Vision*, pp. 4489–4497, Dec. 2015.

C3D-TVSQ

- Resizing the video resolution affects STSQ! Hence, videos are fragmented rather than resizing
- The extracted features are then used to train the linear regressor in the framework

TVSQ Evaluation

- ➤ The proposed approach is trained and evaluated on LIVE QoE database⁴
- The database consists of 15 videos having TVQs due to rate adaptation and have a duration of 5 minutes each
- The database is divided into non-overlapping training and test sets with a split ratio of 2:1
- > Thus, there are 10 videos in the training set and 5 videos in the test set

⁴C. Chen, L. K. Choi, G. de Veciana, C. Caramanis, R. W. Heath, and A. C. Bovik, "Modeling the time-varying subjective quality of http video streams with rate adaptations", *IEEE Transactions on Image Processing*, vol. 23, no. 5, pp. 22062221, May 2014.

TVSQ Evaluation

- The TVSQ feedbacks are initialized to 50, which is the average of the TVSQ's operating range [0,100]
- > We employed two evaluation methodologies as following:
 - Monte Carlo Cross Validation (MCCV)
 - Leave-p-Out Cross Validation (LpOCV)
- > The performance is evaluated using the following four measures -
 - Linear Correlation Coefficient (LCC)
 - Spearman Rank Order Correlation Coefficient (SROCC)
 - Root Mean Squared Error (RMSE)
 - Outage Rate (OR)

TVSQ Prediction Performance

Table: Performance comparison of the proposed RR-TVSQ using STRRED andC3D-TVSQ against Hammerstein-Wiener⁴ (HW) model on LIVE QoE

Method	т	LCC	SROCC	RMSE	OR(%)
MCCV-HW ⁴	12	0.8787	0.8820	4.7675	10.8093
MCCV- RR-TVSQ	2	0.8704	0.8729	4.6503	10.9396
MCCV- C3D-TVSQ	2	0.9041	0.9095	4.7468	10.2013
LpOCV-HW ⁴	12	0.8776	0.8917	4.6358	10.8000
LpOCV- RR-TVSQ	2	0.8766	0.8698	4.8282	11.4094
LpOCV- C3D-TVSQ	2	0.9058	0.9008	4.7916	9.7315

TVSQ Prediction Plots

Inferences

- State-of-the-art prediction performance of RR-TVSQ using STRRED
- Outstanding performance of NR C3D-TVSQ demonstrates the effectiveness of C3D spatio-temporal features
- Robust C3D spatio-temporal features; could be useful in many potential applications
- Significant reduction in the model order from 12 to 2. This implies that the hysteresis dependencies are greatly simplified
- RR-TVSQ and C3D-TVSQ prediction performances demonstrate the effectiveness of the proposed linear regression framework
- The proposed framework for TVSQ prediction also provides **flexibility in** choosing the VQA of choice for STSQ with suitable feedback order

THANK YOU