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Conclusion

v The Particle Filter (PF)

Main idea: Approximate the posterior density function of the state using a set of random samples, called particles, and their 
associated weights.
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q The posterior pdf is approximated by a set of samples:

q The importance weights are given by: 

How to integrate constraints within the PF?
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v Proposed work

v Many real-world applications, such as target tracking, (electric and renewable) power grids, navigation and chemical processes, can be 
formulated as a state-space model, where the state of the dynamical system is subject to additional constraints that arise from physical 
laws, natural phenomena or model restrictions. These constraints cannot be incorporated into the state-space model easily.

The very numerical nature of the particle filters, which constitutes their strength for multidimensional numerical integration, 
becomes their major weakness in handling constraints on the state. 

There are two major approaches that handle constraints within the PF framework: 
 The acceptance/rejection approach enforces the constraints by simply rejecting the particles violating them. Although the 

acceptance/rejection procedure does not make any assumptions on the distributions and therefore maintains the generic 
properties of the particle filter, it is computationally inefficient as resources are wasted in drawing particles that may be 
rejected later on. Moreover, the number of samples will be reduced and hence the estimation accuracy may decrease, especially 
with a poor choice of the sampling density.  Also, unconstrained sampling from a density followed by verification against 
constraints (especially nonlinear) may be computationally more demanding than sampling directly from the constrained region.

 An alternative way to impose state constraints within the particle filter framework is to impose the constraints on all particles 
or equivalently sample from a constrained importance distribution. 

 We investigated the optimality properties and the estimation error of the PoDeT approach. 

 We derived performance limits and errors bounds of this approach.

 In particular, we showed that if the posterior density is not “well-localized” within the constraining interval, then PoDeT will result 
in a large estimation error. On the other hand, if most of the posterior density lies within the constraining interval, then PoDeT will 
result in a bounded estimation error. 

The particle filter (PF) has been proven a powerful Monte Carlo approach for solving nonlinear and non-Gaussian state estimation 
problems. 

v State-of-the-art

Impose the constraints on all particles of the PF. This approach, however, is valid for hard constraints only. It actually constrains 
the posterior density of the state rather than its mean.

Pointwise Density Truncation method (PoDeT)
Although most constrained particle filtering methods adopt the PoDeT approach, there are no mathematical grounds, including 
optimality properties and convergence results, of PoDeT.

 This work addressed the optimality properties of PoDeT for constrained particle filtering. 
 We discussed the error introduced when the particles are constrained to satisfy the boundary constraints, whereas the 

true density is not necessarily supported by the constraining interval. 
 We showed that the PoDeT approach results in a bounded estimation error when the target density is “well localized” 

in the constraining interval (Theorem 1). On the other hand, PoDeT may lead to a large estimation error if the 
posterior density of the target is not well-localized (Theorem 2). 

 In particular, unlike the unconstrained system, there are no convergence results of the PoDeT method. We hope that 
this paper incites more research into the performance limits of constrained particle filtering as well as the 
development of more algorithms that constrain the state estimate rather than the density itself.

 We consider the following non linear dynamical system

 This example is severely nonlinear. It was shown that the Extended Kalman Filter (EKF) fails in estimating the true state 
value of the unconstrained system.

 To assess the performance of PoDeT, we choose the constraint interval [an, bn], where the mean of the unconstrained 
posterior density naturally satisfies the constraint. We consider two cases: (i) most of the unconstrained posterior 
density lies within the constraint interval, thus well-localized; (ii) a high probability mass of the unconstrained 
posterior distribution lies outside of the constraint interval, thus not well-localized. 

v We consider the posterior density at time n = 8. Notice that, in the two test cases, the unconstrained mean naturally 
satisfies the constraints. Test case (i): we choose the constraining interval                         (see Fig 1(b)). The 
unconstrained posterior density has mean                                     and the PoDeT mean estimate is                        . Test 
case (ii): the constraining interval is chosen as                       (see Fig. 1(c)). PoDeT results in a truncated density with 
mean            , which is further from the true mean (         ). PoDeT was able to estimate the mean of the well-localized 
case with a smaller error compared to the non-localized case. 

Theorem 1. Assuming that the transition kernel    is Feller and that the likelihood function   is continuous and bounded from 
below by a strictly positive constant, and considering a truncation operator   that truncates any probability distribution to a set   
such that                            . Then, for every                          , we have     1I )( xn
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where     is a time-dependent constant.

Theorem (2) states that for non well-localized densities, the error of the PoDeT estimated density will be bounded from below. In 
particular, if the constraining interval covers a small area                        then the density estimation error will be large, i.e.,                        .2/1 4/1
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In Theorem (1), observe that    denotes the area of the state posterior density that does not include the constraining interval. Put 
simply, the PoDeT approach results in a bounded estimation error to the posterior density of the state if the target density is well-
localized in the constraining interval I = [a, b]. In the one-dimensional case, a characterization of the localization of a distribution 
with respect to an interval I can be given in terms of the probability of the interval I: if                                where                 is a small 
number, then the density is said to be well-localized. In particular, an important parameter that controls the estimation error of 
PoDeT is the area under the pdf delimited by the interval [a, b]. Intuitively, if high probability regions of the density are within the 
constraining interval, then the conditional mean estimate will be close to the truncated density at the support. In this case, the error 
in estimating the posterior distribution is small and can be quantified using the area under the tails of the well-localized density, i.e., 
the pdf area in the interval                               .                                                                                                                                                                             
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Lemma 1. Let    be a probability measure on   , and   a set such that                               We denote by     the truncation of    onto  , i,e. 
for any set   , we have
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Then, the variation of the signed measure            satisfies  I
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Lemma 2. Consider two measures     and     such that        , for any                  then ,xn
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where          and         are constants that depend, respectively, on the kernel    and likelihood    .
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Error Bounds of Empirical Measures

Optimal Stochastic Filtering
In the stochastic filtering framework,     denotes the map that takes                         to                      , and       is the map that takes                                                1:11 |  tt yxp  1:1| tt yxp
 1:1| tt yxp  tt yxp :1|  1:11 |  tt yxp  tt yxp :1|

Theorem 2. Consider a set I and let                        , then there exists a function                             such that    It
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where ϕn is the constraint function at time n given by:
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In the following Theorem, we establish the error estimate from below. We show that if the constraining interval is not mostly 
contained within the true density, then the PoDeT error will be bounded from below. Let                                 and                                  . 
Denoted by                    .         
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