A VIDEO DEHAZING SYSTEM BASED ON FAST AIRLIGHT ESTIMATION

Yongmin Park and Tae-Hwan Kim

KOREA AEROSPACE UNIVERSITY

November 10, 2017 / KOREA AEROSPACE UNIVERSITY

OUTLINE

Introduction

Dehazing

Background

- Hazy imaging model
- DCP-based dehazing method

Proposed dehazing system

- Fast airlight estimation
- Proposed dehazing system

Evaluation

Conclusion

INTRODUCTION

- Dehazing
 - Hazy images
 - Image quality is degraded by haze

Input Dehazing: The signal processing used to remove haze

- Recovered images
 - Enhance the image quality by removing the haze **Computer vision systems**

Undesirea output

BACKGROUND

Hazy imaging model¹⁾

The ratio at which "the light reaches the camera without being scattered"

Hazy image

 \rightarrow Goal of dehazing is to obtain **J** by estimating **A** and **t** using given **I**

1) S. G. Narasimhan and S.K. Nayar. "Chromatic frame work for vision in bad weather", IEEE Conference on Computer Vision and Pattern Recognition(CVPR), volume 1, pages 598-605, June 2000.

KOREA AEROSPACE UNIVERSITY

BACKGROUND

DCP-Based Dehazing¹⁾

Airlight Estimation

S: Candidate locations for the airlight pixel

Y

Airlight pixel: Brightest pixel in luminance Y for S

1) K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," IEEE Trans. Pattern Analysis & Machine Intelligence, vol. 33, no. 12, pp. 2341–2353, Dec. 2011.

KOREA AEROSPACE UNIVERSITY

Dark channel

Ⅰ^{dark}

BACKGROUND

DCP-Based Dehazing¹⁾

Profiling results of software simulation - 800MHz ARM Processor

1) K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," IEEE Trans. Pattern Analysis & Machine Intelligence, vol. 33, no. 12, pp. 2341–2353, Dec. 2011.

Fast Airlight Estimation

Distributed sorting with scaled luminance

S: Brightest pixel locations in each sub-region

Dark channel

∎*dark*

Distributed sorting

Scaled suminance

Airlight pixel: Brightest pixel in L for S

Scaled luminance $\mathbf{L} = \mathbf{Y} \cdot \mathbf{I}^{dark}$

Fast Airlight Estimation

Selective Airlight Estimation

> Coherence between successive video frames is presented.

$$|L^{(prev)}(\mathbf{\dot{z}}^{(prev)}) - L^{(current)}(\mathbf{\dot{z}}^{(prev)})| > L_{th}$$

- Overall Architecture
 - ARM Processor in HPS
 - Control process
 - Dehazing Processor in FPGA
 - > Overall dehazing process with fast airlight estimation

- Operating mechanism
 - Read the hazy video stream from the NAND flash memory.
 - Extract a hazy image from the hazy video stream.
 - Feed it to the dehazing processor through the FPGA bridge.

- Operating mechanism
 - The dehazing processor performs the oveall dehazing process.
 - The dehazing result is displayed through the VGA output.

- Dehazing processor
 - Two OpenCL kernels
 - Airlight estimation kernel
 - Scene recovery kernel

KOREA AEROSPACE UNIVERSITY

EVALUATION

FPGA resource utilization

	-	-		
		320×240	640×480	800×600
	ALMs	21.3k	28.2k	32.0k
resource	registers	43.0k	46.6k	53.4k
utilization	DSPs	26	36	42
	memory (bits)	1.2M	2.5M	3.2M
frequency	HPS	800	800	800
(MHz)	FPGA	86.3	88.2	88.7

EVALUATION

Dehazing Quality

Hazy Images

Dehazing results (referential)

Dehazing results (proposed)

EVALUATION

- Demo
 - Hazy video stream

Proposed dehazing system

CONCLUSION

Main Contribution

- Low-complexity dehazing method based on fast airlight estimation
 - Distributed sorting with scaled luminance
 - Selective airlight estimation
- Efficient dehazing system based on low-complexity dehazing method
 - The overall dehazing time is reduced by 40% in average