DO WE REALLY NEED MORE TRAINING DATA FOR OBJECT LOCALIZATION

Hongyang Li¹, Yu Liu¹, Xin Zhang^{2*}, Zhecheng An², Jingjing Wang², Yibo Chen¹ and Jihong Tong³

¹The Chinese University of Hong Kong, ²Tsinghua University, ³Eastern Liaoning University

http://www.ee.cuhk.edu.hk/~yangli/project/eic.html

Presenter : Xin Zhang, Tsinghua University

Preparation

Q1: Is more training data beneficial to obtain better results evaluated on the original smaller scale dataset?

Q2: How to utilize utilizing the feature maps in the network to obtain better representation of data?

Our work

i. THE EXTENDED IMAGENET DATASET.[2]

ii. Whether a larger dataset is necessary to train a deep learning model for robust and representative features?

iii. Embed the region proposal network framework in a multi-depth, hourglass style to fully leverage the information of feature maps on different resolutions.

[2]http://www.ee.cuhk.edu.hk/~yangli/project/eic.html

Extended ImageNet Classification (EIC) set

- **2686** classes
- more 'difficult' images
- The Training Set (2456727 images)
- The Validation Set (273140 images)

Extended ImageNet Classification (EIC) set

- Smaller Objects (Smaller than 32 * 32)
- Twisted Objects (Width/Height > 4 or < 0.25)
- The feature distance : $D(x_1,x_2)=1-cos(x_1,x_2)$
- The feature representation : layer fc6 in the VGG-16 model
- The extended categories are chosen by the WordNet

Detect colit	Extended ImageNet		ILSVRC CLS 2012	
Dalaset spilt	Train	Val.	Train	Val.
# of images	2,456,727	273,140	1,281,167	50,000
Avg im # per cls	251-1300	34-50	732-1300	50
Avg anno per im	1.53	1.17	1.41	1.02
Avg obj scale	25.37 %	25.50%	25.39%	25.61 %
Small obj %	4.81	4.27	2.35	2.47
Twisted obj %	42.77	44.55	40.72	42.94
Inner-cls distance	0.434	0.396	0.462	0.411
Inter-cls distance	1.12	1.46	1.52	1.55

im=image, avg=average, cls=class, anno=annotation, obj=object.

Network architecture

• Different-sized anchors are placed at different resolutions of the network, fully leveraging the information of feature maps especially for small objects.

Anchor candidates

Scales : {16, 32}, {64, 128}, {256, 512}

The merged feature maps for loss input:

$$\mathbf{G}^m = \sigma(\mathbf{w}_F^m \otimes \mathbf{F}^m + \mathbf{w}_H^m \otimes \mathbf{H}^m + \mathbf{b}^m)$$

Training loss and inference

Loss function

$$L^{m}(p_{i}, t_{i}, k_{i}^{*}, t_{i}^{*}) = -\frac{1}{N_{1}^{m}} \sum_{i} \log p_{i, k_{i}^{*}} + \frac{1}{N_{2}^{m}} \sum_{i} [k_{i}^{*} = 1] \mathcal{S}(t_{i}^{*}, t_{i})$$

 $L^m(p_i, t_i, k_i^*, t_i^*)$ is the loss for sample i on resolution level m.

 $p_i = \{p_{i,k} | k = 0, \dots K\}$ is the estimated probability.

- t_i^* is the ground-truth regression offset.
- k_i^* the ground-truth class label.

Training loss and inference

Total Loss

$$L = \sum_{m=1}^{M} L^{m}(p_{i}, t_{i}, k_{i}^{*}, t_{i}^{*})$$

M is the number of resolution levels.

Remarks:

(a) Adjust image scale during training.
(b) Control the number of negative samples in a batch.
(c) Additional gray cate- gory.

Inner-level(threshold : 0.7) and inter-scale(threshold : 0.5) NMS[3] scheme. Scales: Ranging from 1400 to 200 with an interval of 200.

^[3]Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari, "Measuring the objectness of image windows," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 34, no. 11, pp. 2189–2202, Nov. 2012.

Experiment

Pretrain

Setup and evaluation metric

Inception-BN on the EIC dataset : around **79% top-5** accuracy.

The base learning rate	0.0001 (50% drop every 7,000 iterations.		
Momentum	0.9		
Weight decay	0.0005		
Maximum training iteration	200,000 (roughly 8 epochs)		
Batch size	300		
Aspect ratio (16 to 512)	[0.15, 0.5, 1, 2, 6.7]		

Experiment

Component analysis

Structure	Rec@0.5	Scheme	Rec@0.5	AR@300
Down-sample alone Down-sample + splitAnc Deeper down-sample + splitAnc Deeper hourglass	89.25 87.94 92.33 94.51	9 anchors (short for ac.) 30 ac. 30 ac. + dyTrainScale + ctrlNegRatio + grayCls 30 ac. + all	87.33 94.51 95.33 ↑1.78 ↑1.13 97.81	- 59.34 - 68.45

- The hourglass network in all settings.
- Rec@0.5 is the recall at IoU threshold 0.5 using top 300 proposals, evaluated on EIC validation set.
- We have the highest recall of 94.51, which proves the effectiveness of such a structure.

Experiment

Investigation on training data

- A larger dataset (EIC vs ILSVRC 1k) is beneficial to gain better results as more simples will ease overfitting if the model capacity is large.
- The base ordering is inferior for training the neural network as the model will severely bias towards direction in the feature space due to continuous samples of one class.
- A random sampling scheme ensures the classifier can witness various samples and the weights are quickly learned separately for each class, making the model robust and easy to converge.
- We find the amount of training data is not the most crucial point for obtaining a better model, but rather a good balance of the distribution among training samples weigh more.

Training data strategy	AR@10	AR@100	AR@500
ILSVRC_1k, base	38.45	50.02	54.72
ILSVRC_1k, random	53.76	65.21	76.67
ILSVRC_1k, balanced	52.17	66.58	75.32
EIC, base	42.19	46.73	49.01
EIC, random	59.31	71.82	78.56
EIC, balanced	58.72	72.39	81.27
Selective search [26]	45.82	57.63	69.45
GOP [27]	52.66	63.21	74.93

EIC vs ILSVRC 1k

Conclusion

- The Extended ImageNet Classification dataset
- Addressing the object localization problem by applying a conv-deconv structure in the region proposal framework, allowing different sizes of anchors placed at various depth in the network.
- More training data is good, and yet a balanced data distribution could achieve better results at the cost of less data.

EIC is here:

http://www.ee.cuhk.edu.hk/~yangli/project/eic.html

Thanks!