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ABSTRACT 

The reconstruction of real world objects becomes even more 
important in the view of creating highly realistic scenes for 
Virtual Reality applications. In this paper, we present a fully 
automated algorithmic pipeline for high-quality 3D 
reconstruction of real world objects. The proposed method 
refines an initial 3D model by exploiting the results of 
additional pairwise stereo depth estimation. An automatic 
camera selection approach provides different point clouds, 
which are fused into a common coherent and highly detailed 
3D model. The quality of the reconstruction results is 
discussed in comparison to several state-of-the-art tools, also 
in the context of automation and performance. 
 

Index Terms— multi-view, stereo image processing, 
surface reconstruction, 3D modelling 
 

1. INTRODUCTION 

3D reconstructions of objects from real world are becoming 
more and more important in various fields of application [1]. 
In this paper, we will focus on the reconstruction of 
architectural sites like buildings and monuments. Such highly 
realistic 3D reconstructions of static objects can be used for 
cultural heritage preservation and in virtual museum 
applications [2]. 

Numerous solutions specialized on this topic already 
exist. However, many of these solutions work only on the 
basis of laser scan data and therefore require specific 
equipment, which is not available or affordable for everyone. 
Furthermore, it is inconvenient, if solely point clouds are 
provided as output format, since they are not directly suitable 
for integration in commonly used rendering engines. They 
require further processing steps with separate tools, which 
makes fully automated workflows difficult.  

The core component of the presented approach is the 
dense depth based 3D surface reconstruction. It starts with a 
rough point cloud based 3D model, which is further refined 
with the proposed method. Compared to existing approaches, 
one novelty is that parts of the 3D model refinement are 
performed in the related depth maps of the original cameras, 
with dedicated input view clustering (stereo systems), rather 
than directly in the model. 

The complete processing chain requires a set of input 
images capturing the object from different views. Usually, 50 
to 100 images are sufficient. The processing pipeline initially 
consists of the estimation of the initial 3D structure using 
VisualSFM [3]. An automatic camera selection algorithm 
arranges relevant input images in a number of stereo pairs. A 
dense depth map refinement is performed to achieve 3D point 
clouds per stereo pair, followed by a data fusion step to create 
a final coherent 3D point cloud. Based on Poisson 
reconstruction and quadric-edge collapse, a manageable 3D 
mesh and the associated UV atlas are computed, which can 
then be integrated directly into authoring tools. Details of the 
individual processing steps are given in the next section.  

Since the degree of reconstruction accuracy is one of the 
key aspects for the proposed algorithmic pipeline, we 
compare the resulting 3D models to the highly-rated PMVS 
reference results [7] as well as several state-of-the-art tools 
from major companies like Agisoft [9] and Autodesk 
[10][11]. Results of this study are presented in section 3. 
 

2. FULLY-AUTOMATED PIPELINE 

The main idea of the proposed algorithmic pipeline is to 
refine an existing 3D structure by exploiting the results of 
additional pairwise stereo depth estimation in order to 
achieve a high-density 3D surface reconstruction.  

The pipeline is assembled of several algorithmic 
components, which are presented in Fig. 1. The blue modules 
are using commonly available approaches, whereas the green 
modules refer to our proposed extension for 3D surface 
reconstruction. The different processing steps are explained 
in the following sub-sections. 

 

 
Fig. 1: Algorithmic architecture of the proposed approach. 
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2.1. Initial estimation of 3D structure 
 
Initially, the 3D structure of the scene is estimated by using 
well-known structure from motion approaches. In the 
presented workflow, VisualSFM [3] and SIFT on GPU [4] 
are used to obtain an initial 3D model and calibration 
parameters from a given set of unordered input images. The 
calibration contains the 6DOF pose of the images used in this 
reconstruction step. The model is described as a sparse 3D 
point cloud that will be used hereinafter to initialize the dense 
depth estimation. 
 
2.2. Camera pair pre-selection 
 

The dense depth map refinement is based on neighbored 
camera views. Hence, an automatic pairwise camera pre-
selection has been developed in order to pre-select optimal 
stereo camera views. The challenge here is to find neighbored 
stereo images that are close enough for robust depth 
estimation by keeping maximum possible difference between 
stereo views without losing object information.  

The algorithm aims to calculate a set of image pairs 
{s1, s2, … , s𝑛𝑛} with s𝑖𝑖 = �𝑖𝑖𝑗𝑗 , 𝑖𝑖𝑘𝑘� ∈ 𝐼𝐼 × 𝐼𝐼 under the following 
constraints: 
• Compactness: Redundant images are excluded. 
• Suitability: The calculated image pairs are well suited for 

stereo depth estimation. 
• Coverage: Minimal loss of content compared to the 

reconstruction using the maximum set of images pairs 
��𝑖𝑖𝑗𝑗 , 𝑖𝑖𝑘𝑘���𝑖𝑖𝑗𝑗 , 𝑖𝑖𝑘𝑘� ∈ 𝐼𝐼 × 𝐼𝐼 ∧ 𝑖𝑖𝑗𝑗 ≠ 𝑖𝑖𝑘𝑘�. 

 
For a given image 𝑖𝑖𝑗𝑗 the input consists of the set of visible 
points 𝑃𝑃𝑗𝑗 (based on feature visibility) and the calibration data 
𝑐𝑐𝑗𝑗. The compactness constraint aims to generate a minimal 
subset of images 𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛 ⊂ 𝐼𝐼 so that for all images 𝑖𝑖𝑗𝑗 ∈ 𝐼𝐼 a 
certain percentage (70% in our case) of its points 𝑃𝑃𝑗𝑗  could be 
reconstructed using the images from 𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛. The suitability 
constraint is achieved as follows: For each image pair 
[𝑖𝑖𝑗𝑗 , 𝑖𝑖𝑘𝑘] ∈ 𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛 × 𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛 a reconstruction ratio r is calculated as 
follows: 

𝑟𝑟(𝑗𝑗, 𝑘𝑘) =
�� 𝑝𝑝 ∣∣ 𝑝𝑝 ∈ 𝑃𝑃𝑗𝑗 ∩ 𝑃𝑃𝑘𝑘 ∧ 5° < 𝑎𝑎𝑗𝑗𝑘𝑘(𝑝𝑝) < 45° ��

�𝑃𝑃𝑗𝑗 ∪ 𝑃𝑃𝑘𝑘�
 

with 𝑎𝑎𝑗𝑗𝑘𝑘(𝑝𝑝) is the angle of two viewing rays emanating from 
p towards the two camera centers. The reconstruction ratio r 
is affected by the baseline (via the angle criterion) and the 
relative camera orientation within a stereo pair (via the 
intersection versus union calculation). A higher ratio means a 
higher compatibility of the contained images in terms of the 
stereo reconstruction. In order to force the usage of 
sufficiently compatible images, all pairs having a 
reconstruction ratio below a given threshold will be removed. 

The coverage criterion is addressed by applying a greedy 
search algorithm: The first step consists in finding the stereo 
system whose set of reconstructible points (i.e. the 
denominator of the reconstruction ratio) is maximum. In 
subsequent steps, the stereo pair is chosen, which maximises 
the coverage ratio, i.e. the set of reconstructible points 
(defined as the union of the reconstructible points of all 
contained stereo pairs). Results of the automatic stereo pair 
selection are shown in Fig. 2. 
 

 
Fig. 2: First three stereo systems created by automatic camera 
selection. 
 

2.3. Initial depth map generation 
 

In general, the dense depth-based surface reconstruction 
approach requires an initial depth-map for each stereo pair. 
Hence, the 3D information resulting from structure-from-
motion needs to be back-projected in each camera. As the 
initial 3D point cloud does not contain surface meshes, it is 
not trivial to derive visibility information for each vertex, i.e. 
to decide which of the points will be visible in a given camera 
perspective. 

Thanks to the output of the structure-from-motion 
module, the required information is available. The visible 
points of the left respectively the right camera of a stereo-
system are projected to the belonging camera to obtain an 
initial sparse depth map and cross-bilaterally filtered to 
densify this sparse map. The filtered map of the left side is 
then combined with visible points of the right side and vice 
versa: All visible points occluding the opposite side's depth 
map will be combined with their visible points and cross-
bilaterally filtered. This way, the detected feature points of 
two views can be combined without introducing artifacts (as 
only occluding points will be combined) and thus less 
filtering is required. At the end, the number of bilateral filter 
iterations required for closing all holes is treated as a quality 
measure; i.e. the depth map containing more unfiltered pixels 
is used as initial depth estimate for the depth refinement. An 
example of initial and dense depth map is given in Fig. 3. 

 
Fig. 3: Initial depth map creation: (left) initial sparse map, 
(right) initial dense map. 



2.4. Depth estimation and fusion 
 

The final step of the depth map estimation is carried out 
by a highly accurate Patch-Sweeping algorithm [5] refining 
the dense depth maps from the previous step. Patch-Sweeping 
assumes that a 3D object surface can be described with 
quadratic surface elements, which are named as spatial 
patches. In order to estimate an object surface, the volume of 
interest is quantized by oriented spatial patches along the 
viewing rays of a reference camera according to a discrete 
number of depth layers. These patches represent depth 
hypotheses, which are evaluated by projecting the patches 
onto the image planes of all cameras, execute a texture lookup 
and average the pairwise normalized cross correlation for all 
images and each patch projection. For every pixel of the 
reference image, a depth value is assigned by a winner-take-
all selection among the matching scores of all depth 
hypothesis along the corresponding viewing ray. Since the 
algorithmic concept is highly parallelizable and therefore 
well suited for GPGPU processing, the enormous 
computational load can be brought to graphics cards, what 
enables high quality real-time depth estimation. Finally, the 
multiple refined depth maps from all stereo pairs are fused 
into an overall high-resolution 3D model using the visibility-
driven patch group generation [6]. By applying this fusion 
procedure, all 3D points occluding any other depth map are 
filtered out, resulting in an advanced foreground 
segmentation. The remaining artifacts have a greater distance 
to the object to be reconstructed. As a result, they do not 
occlude any other depth maps. 
 

3. RESULTS 

In order to evaluate the quality of the proposed automatic 
reconstruction pipeline, we compared our results to several 
state-of-the-art approaches.  

Fig. 4 depicts the results on the reference data set 
fountain-P11 [13]. Compared to the highly-rated PMVS 
reference results [7] our method shows a significant 
improvement of visual quality and geometric detail. Fig. 5 
illustrates this on the example of the shaded 3D model. For 
example, more geometrical details can be seen in the surface 
of the bricks and the golden fish. Additionally, with our 
method the border area on the right-hand side of the wall is 
reconstructed with higher quality and less artefacts. 

Moreover, we competed the proposed workflow against 
several professional tools available on the market, among 
others 3DF Zephyr [8], Agisoft PhotoScan [9], Autodesk 
123D Catch [10] and ReMake [11], and Reality Capture [12]. 
Since we had no access to their original or intermediate 
reconstruction data with possibly more details, we reduced 
our meshes to adequate complexity, what allows for better 
comparability. The applied post-processing pipeline is also 
fully automated and involves screened Poisson surface 
reconstruction [14], followed by a simplification to a 

dedicated amount of triangles by iterative contraction of 
edges based on Quadric Error Metrics [15]. Finally, for 
restoring details that got lost during simplification, the 
utilization of a texture in contrast to the vertex colors 
calculated in the patch fusion step is required. 

Overall, we found, that ReMake and PhotoScan 
performed best. Fig. 6 and Fig. 7 highlight some 
reconstruction details in comparison with these programs for 
the examples of Arco Valentino in Torino and the Statue of 
Goethe in Berlin.  

Besides the visual quality, these tools have their 
individual pros and cons regarding automation and 
performance. Table 1 gives an overview of the most 
significant findings. 

 
Autodesk ReMake Our Approach Agisoft PhotoScan 

– supports only 
JPEG images 

+ supports several 
image formats 

+ supports several 
image formats 

+ visual quality of 
reconstructed 
object 

+ visual quality of 
reconstructed 
object 

+ visual quality of 
reconstructed 
object 

– coarse geometry, 
details mainly 
through texture 

+ highly accurate and 
dense geometry 

+ highly accurate and 
dense geometry 

+ meshes usually 
watertight  

+ meshes usually 
watertight  

– meshes often 
contain holes 

+ fully automated + fully automated – semi-automated 

+ easy-to-use 
workflow 

+ easy-to-use 
workflow 

– complicated 
workflow 

+ good background 
segmentation 

+ good background 
segmentation 

– manual masking 
recommended 

– manual parameter 
adjustments not 
possible 

+ manual parameter 
adjustments 
possible 

+ manual parameter 
adjustments 
possible 

Table 1: Comparison of Pros (+) and Cons (–). 

 
4. CONCLUSION 

Even though we focused on the development of a fully 
automated workflow, the proposed algorithmic pipeline 
allows for targeted interventions in order to fine-tune the 
generation of the 3D reconstruction results. For example, the 
characteristics of the input image data sets as well as different 
demands on 3D structure quality or computational effort can 
be particularly taken into account. However, the presented 
approach outperforms current state-of-the-art software in 
terms of automation and level of quality. As presented in 
section 3, the geometrical detail is much higher compared 
with conventional tools. Another advantage of the presented 
approach is the GPGPU centric implementation, which offers 
a significant gain in performance. 



             
Fig. 4: Original image (left) and reconstructed surface (middle, right) of fountain-P11 data set. 

 

       
Fig. 5: Shaded 3D model of fountain-P11 data set reconstructed with PMVS reference method (left) and our approach (right). 

 

 
Fig. 6: Comparison of reconstruction details at the example of Arco Valentino in Torino. 

 

 
Fig. 7: Comparison of reconstruction details at the example of the Statue of Goethe in Berlin. 

Autodesk ReMake Our Approach Agisoft PhotoScan 

Autodesk ReMake Our Approach Agisoft PhotoScan 
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