A FEATURE FUSION METHOD BASED ON EXTREME LEARNING MACHINE FOR SPEECH EMOTION RECOGNITION

Lili Guo¹, Longbiao Wang¹, Jianwu Dang^{1, 2}, Linjuan Zhang¹, Haotian Guan^{1,3} ¹Tianjin key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China ² Japan Advanced Institute of Science and Technology, Ishikawa, Japan ³ Intelligent Spoken Language Technology (Tianjin) Co. Ltd., Tianjin, China

Abstract

Background: The main flow of current studies utilized convolutional neural network (CNN) directly on spectrograms to extract features, and employed the state-of-the-art models such as the bidirectional long short term memory (BLSTM).

Problems: (1) those features did not fully utilize priori knowledge;

② BLSTM is not efficient enough for training small-scale datasets such as the emotional datasets.

Solutions: (1) propose a feature fusion method to combine CNN-based features and heuristic-based discriminative features; 2 utilize extreme learning machine (ELM) instead of BLSTM to solve the second problem.

Results: our method leads to 40% relative error reduction in F1-score compared to CNN-BLSTM on EmoDB.

Methods

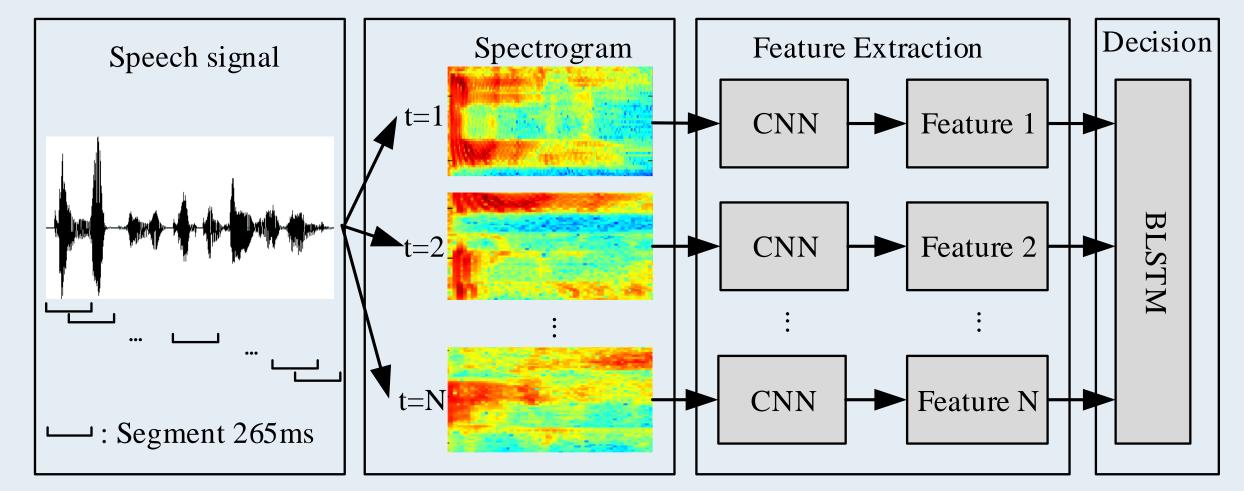


Fig. 1. Baseline: CNN-BLSTM

Problems:

- (a) Features: it does not utilize knowledge-based heuristic features (such as MFCC, pitch, energy, etc.);
- (b) Models: the framework of BLSTM is complicated, and it needs lots of training data.

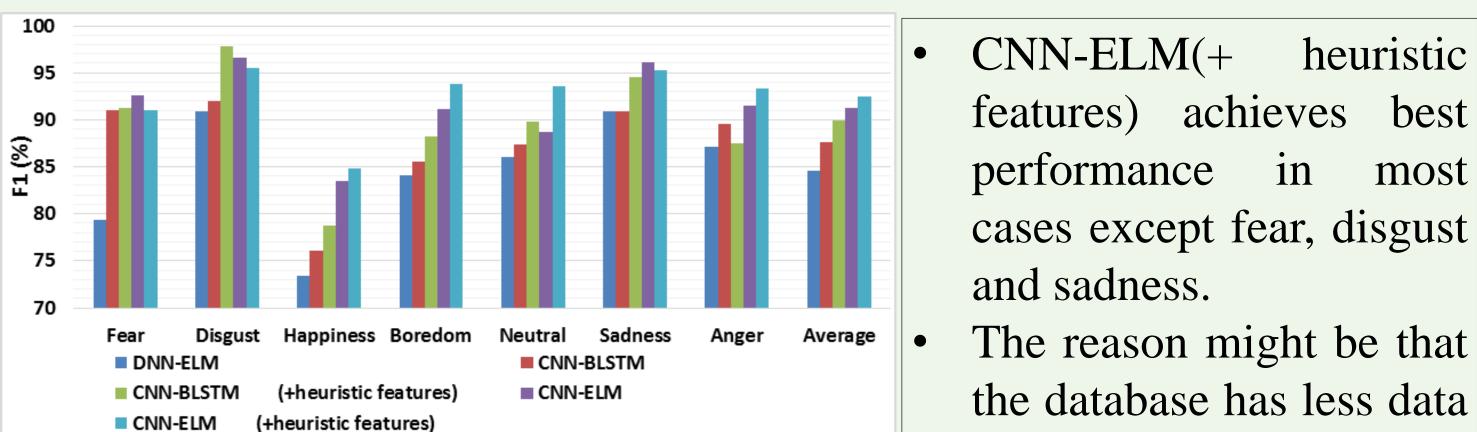
Speech signal	Data Initialization	Feature Extraction	Feature Fushion	Decision
i di i				

Results

 Tab. 2. Comparison of different speech
emotion recognition models

cinonon recognition mouels						
Model	P (%)	R (%)	F1 (%)			
DNN-ELM	85.55	84.09	84.56			
CNN-BLSTM	89.41	86.66	87.49			
CNN-BLSTM (+ heuristic features)	90.22	89.73	89.68			
CNN-ELM	92.64	90.83	91.47			
CNN-ELM (+ heuristic features)	93.30	91.97	92.50			

- **CNN-ELM** performs \bullet better than CNN-BLSTM in this task.
- CNN-BLSTM(+heuristic features) performs better than CNN-BLSTM alone.
- Our method outperforms CNN-BLSTM by 40% relative error reduction.



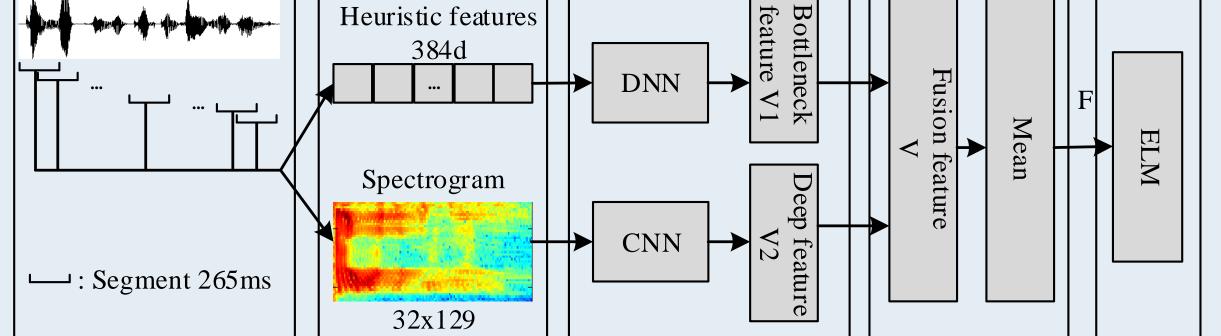


Fig. 2. Our method: Feature Fusion Method based on ELM **Solutions:**

- (a) propose a feature fusion method that combines CNN-based features and heuristic-based features;
- (b) use ELM instead of BLSTM to distinguish emotions.

Experimental Setup

- **Dataset**: EmoDB consisting of 535 utterances.
- The structure of CNN Convolutional layer 1: $32@5 \times 5$ Convolutional layer 2: $64@5 \times 5$ Two pooling layers: 2×2 Full connected layer: 1024 units

Fig. 4. F1 results for each emotion.

_							
Fea	61	0	2	0	2	2	2
Dis	- 0	40	1	1	1	0	3
Hap	- 3	0	46	0	0	0	22
Bor	- 0	0	0	68	7	6	0
Neul	• 1	0	0	7	69	2	0
Sad	- 0	0	0	2	0	60	0
Ang	0	1	1	0	0	0	125
	Foo	Die	Han	Ror	Nou	bc2	Δna

Fea Dis Hap Bor Neu Sad Ang

(a) CNN-BLSTM

and sadness. The reason might be that

cases except fear, disgust

in

heuristic

most

the database has less data of disgust and sadness.

Fea	61	0	4	0	2	0	2
Dis	- 1	43	0	0	0	1	1
Нар	- 2	0	56	0	0	0	13
Bor	- 0	0	0	76	2	3	0
Neul	- 1	0	0	4	73	1	0
Sad	- 0	0	0	1	0	61	0
Ang	- 0	1	1	0	0	0	125
	Fea	Dis	Нар	Bor	Neu	Sad	Ang

(a) Our method

- Fig. 5. Confusion matrices of CNN-BLSTM and our method.
 - Abscissa: detected labels

Ordinate: actual labels lacksquare

Conclusions

Fig. 3. Emotion distribution.

Dropout layer: 0.5 factor.

Validation of Bottleneck Features

Tab. 1. F1 (%) comparison of bottleneck features and heuristic features.

Emo	Heuristic F.	Bottleneck F.	Change	Method
Fea	67.74	66.67	-1.07	
Dis	79.07	80.43	+1.36	> There a
Hap	60.94	68.66	+7.72	improve
Bor	73.94	76.02	+2.08	using bo
Neu	69.82	83.87	+14.05	
Sad	84.03	82.26	-1.77	It is nec
Ang	80.29	85.28	+4.99	bottlene
Ave	73.69	77.60	+3.91	

- d: ELM
- are great ements when ottleneck features.
- cessity to extract eck features.

- \checkmark We proposed a feature fusion method with ELM, which combines CNN-based features and heuristic-based discriminative features. \checkmark It is found that knowledge-based heuristic features have significant
- contribution although automatically extracted features were good. ✓ The ELM is suitable for small-scale database training for speech emotion recognition.

Future works:

- Taking experiments on a large-scale dataset.
- Taking strict selection about heuristic features.

Acknowledgements

The research was supported by the National Natural Science Foundation of China (No. 61771333 and No. U1736219), JSPS KAKENHI Grant (16K00297) and Didi Chuxing.