ROBUST SEQUENTIAL TESTING OF MULTIPLE HYPOTHESES IN DISTRIBUTED SENSOR NETWORKS

Mark R. Leonard^{*}, Maximilian Stiefel[†], Michael Fauß^{*}, and Abdelhak M. Zoubir^{*}

*Signal Processing Group - Technische Universität Darmstadt - Email: {leonard,fauss,zoubir}@spg.tu-darmstadt.de [†]Continental Engineering Services - Email: maximilian.stiefel@conti-engineering.com

Introduction

- Sequential detectors can significantly reduce the average number of samples compared to fixed sample size tests with the same reliability.
- Sequential detectors for multiple hypotheses can solve non-binary decision problems.
- Fully distributed methods exploit the inherent scalability, fault-tolerance, and absence of a single point of failure in sensor networks.
- Distributional uncertainties in real-world applications call for robust solutions.

Contributions

- We propose the Consensus + Innovations Matrix Sequential Probability Ratio Test (CIMSPRT) as a sequential multiple hypothesis test for distributed sensor networks. • We provide an accurate prediction of the average stopping time of the CIMSPRT.
- We robustify the CIMSPRT using least favorable densities (LFDs).
- We validate the performance of the CIMSPRT and the robust LFD-CIMSPRT in a shiftin-variance test.
- We analyze the impact of network size and connectivity on the performance.

Problem Formulation

- Detect the presence of one out of M signals $x_m(t)$ with different variances σ_m^2 in a non-Gaussian environment with a distributed sensor network.
- \Rightarrow Shift-in-variance test between *M* hypotheses under ε -contamination:

$$\mathcal{H}_{m}: x_{m}(t) \sim \mathcal{N}(0, \sigma_{m}^{2}), \qquad p_{m}^{\text{cont}} = (1 - \varepsilon)p_{m}^{0} + \varepsilon h_{m}$$

$$h_{m} \qquad : \text{ probability density function of the contaminating noise under } \mathcal{H}_{n}$$

$$: \text{ zero-mean normal distribution with variance } \sigma^{2}$$

$$: \text{ true, nominal and contaminated probability density function under }$$

$$: \text{ contamination factor}$$

The Consensus + Innovations Matrix SPRT (CIMSPRT)

• Calculation of the log-likelihood ratio of node k at time instant t and the corresponding test statistic for the hypothesis pair $\mathcal{H}_m, \mathcal{H}_n$:

$$\eta_{mn}^{k}(t) = \log\left(\frac{p_{m}(y_{k}(t))}{p_{n}(y_{k}(t))}\right) \qquad S_{mn}^{k}(t) = \sum_{l \in \mathcal{N}_{k}} w_{kl} S_{mn}^{l}(t-1) + \frac{1}{l}$$

 \mathcal{N}_k : open neighborhood of node k

: coefficient for weighting the information of node l at node k w_{kl}

- : measurement of node k at time instant t
- Decision thresholds for the hypothesis pair $\mathcal{H}_m, \mathcal{H}_n$ [1, 2, 3] :

$$\gamma_{mn}^{u} \geq \frac{4(Nr^{2}+1)\sigma_{\eta,m}^{2}}{7N\mu_{\eta,m}} \left[\log\left(\frac{\alpha}{2}\right) + \log\left(1 - e^{-\frac{N}{2(Nr^{2}+1)}\frac{\mu_{\eta,m}^{2}}{\sigma_{\eta,m}^{2}}}\right) \right]$$
$$\gamma_{mn}^{l} \leq \frac{4(Nr^{2}+1)\sigma_{\eta,n}^{2}}{7N\mu_{\eta,n}} \left[\log\left(\frac{\beta}{2}\right) + \log\left(1 - e^{-\frac{N}{2(Nr^{2}+1)}\frac{\mu_{\eta,n}^{2}}{\sigma_{\eta,n}^{2}}}\right) \right]$$

r	: rate of information flow in the network
lpha,eta	: required probabilities of false alarm and mise
$\mu_{\eta,m},\sigma_{\eta,m}^2$: mean and variance of the log-likelihood ratio
Acconton	a tast at and node with design rule.

• Acceptance test at each node with decision rule:

- $\mathbf{r} \, \mathcal{H}_m$
- under \mathcal{H}_m
- $\sum w_{kl}\eta_{mn}^l(t) \qquad (1)$

• Expected stopping time of the CIMSPRT: slowest one-sided pairwise test

if $\exists m \in \{1, \ldots, M\}$ such that

else: continue sampling,

 $\mathbb{E}_m[T] \approx \max_{\substack{n=1,\dots,M\\m \neq m}} \frac{\log\left(\gamma_{i}\right)}{D(p_m)_{k}}$

 $D(p_m|p_n)$: Kullback-Leibler divergence between p_m and p_n

The Least-Favorable-Density-CIMSPRT (LFD-CIMSPRT)

Least Favorable Densities (LFDs)

tics have crossed the threshold.

• LFDs of Huber's clipped likelihood ratio test for some $c_m, c_n > 0$ [4]

 $q_m = \max \left\{ c_m p_n^0, (1 - \varepsilon) \right\}$ $q_n = \max \left\{ c_n p_m^0, (1 - \varepsilon) \right\}$

Robustifying the C*I***MSPRT**

• We replace the log-likelihood ratio in (1) by the clipped log-likelihood ratios of the LFDs to obtain a robust test statistic:

$$\eta_{mn}^{k,\text{clipped}}(t) = \log\left(\frac{q_m(y_k(t))}{q_n(y_k(t))}\right)$$
(5)

Sample networks: randomly generated simple, connected and undirected graphs

detection o under \mathcal{H}_m

 $S_{mn}^k(t) \ge \gamma_{mn}^u \quad \forall n \in \{1, \dots, M\} \setminus \{m\} : \text{ accept } \mathcal{H}_m$

The test is stopped and \mathcal{H}_m is accepted as soon as all corresponding pairwise test statis-

$$\frac{\gamma_{mn}^u)}{p_n p_n}.$$
 (3)

$$\begin{aligned} \varepsilon p_m^0 \\ \varepsilon p_n^0 \\ \end{aligned}$$
 (4)

Results: Detecting the presence of one out of M signals Setup

• four networks of different size and connectivity

- M = 4 signals with variances $\sigma_m \in \{1, 2, 4, 16\}$
- measurement noise: $h_m = \mathcal{N}(0, 81), \varepsilon \in [0, 0.3]$
- probability of false alarm: $\alpha_{mn} = 0.01$
- 1 000 Monte-Carlo runs

$\mathcal{CIMSPRT}$

- accurate prediction of the average stopping time
- higher variance leads to shorter testing time
- higher network connectivity drastically reduces average stopping time \Rightarrow good scalability
- network size only marginally effects performance

LFD-CIMSPRT

- accurate detection results up to 10~% contamination (20 % under \mathcal{H}_4) irrespective of network size and connectivity
- network connectivity impacts average stopping time

Related Work

- [2] W. Hou, M. R. Leonard, and A. M. Zoubir, "Robust distributed sequential detection via robust estimation," in Proc. 25th European Signal Processing Conference (EUSIPCO), Aug 2017.
- testing," IEEE Trans. Signal Proc., vol. 64, no. 22, pp. 5875–5886, Nov 2016.

TECHNISCHE UNIVERSITÄT DARMSTADT

[1] M. R. Leonard and A. M. Zoubir, "Robust distributed sequential hypothesis testing for detecting a random signal in non-Gaussian noise," in Proc. 25th European Signal Processing Conference (EUSIPCO), Aug 2017.

[3] M. R. Leonard and A. M. Zoubir, "Robust sequential detection in distributed sensor networks," IEEE Trans. Signal Proc., Feb 2018, submitted. [Online]. Available: https://arxiv.org/abs/1802.00263

[4] M. Fauß and A. M. Zoubir, "Old bands, new tracks – Revisiting the band model for robust hypothesis

