
1. Introduction

We develop keyword spotting (KWS) and
acoustic model (AM) components in a far-
field speaker system.
• Use teacher-student (T/S) learning to

adapt a close-talk well-trained production
AM to far-field by using parallel close-talk
and simulated far-field data.

• Use T/S learning to compress a large-size
KWS model into a small-size one to fit the
device computational cost requirement.

• Utilize unlabeled data to boost the model
performance in both scenarios.
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2. Teacher-Student (T/S) Learning

• Simulating far-field data, especially the beamformed one, is very helpful to improving the accuracy of real test data.
• T/S learning effectively used unlabeled data to improve the student model.
• The final AM improves the baseline by with 72.60% and 57.16% relative WER reduction on play-back and live far-field data.
• The small-size CTC KWS model trained with unlabeled data using T/S learning has the same performance as the large-size CTC KWS model, but with only 1/27 foot-print.

• T/S model compression
J. Li, R. Zhao, etc. “Learning small-size DNN
with output-distribution-based criteria,” In
Proc. Interspeech, 2014.
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• T/S domain adaptation
J. Li, M. Seltzer, etc. “Large-scale domain
adaptation via teacher student learning,” in
Proc. Interspeech, 2017.
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• Source training data:
• 3.4k hours of labeled US-English close-talk Cortana audio.
• 25k hours of unlabeled US-English close-talk Cortana audio. 
• 300 hours labeled  live far-field audio.

• Teacher Model:
• LSTM-RNN: 4-layer uni-LSTM-P, 1024 memory units and projection layer with 

512 nodes. Output layer has 9404 nodes, modeling senones. 
• Singular value decomposition (SVD) and frame skipping are used to reduce cost.
• Trained with labeled data with CE and then sequence discriminative training.

Model WER (%)
Playback Live

Close-talk 47.34 23.81
CE (3.4k hours single channel simulation) 21.22 14.30
T/S (3.4k hours single channel simulation) 18.79 14.19
T/S (25k hours unlabeled single channel simulation) 16.61 12.98
T/S (25k hours unlabeled beamformed simulation) 15.26 11.96
T/S (25k hours unlabeled beamformed simulation) + 
3.4k hours simulation sequence training

12.97 11.20

T/S (25k hours unlabeled beamformed simulation) + 
3.4k hours simulation + 300 hours live sequence training

13.38 10.20

Data

Model

simulation simulation
+ 600-hour live
labeled

simulation
+ 940-hour live
unlabeled

large-size CTC 5.39 1.60 -
small-size CTC 11.28 1.94 -
small-size CTC with T/S 7.61 1.73 1.59

The FA rates (%) of KWS models operating at the 96% CA rate. 
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4. KWS Experiments
• Source training data:

• 760 hours labeled close-talk Cortana audio, half with “Hey Cortana” and half without.
• 600 hours labeled far-field live data or 940 hours unlabeled far-field live data.

• Large-size model used as teacher (24M parameters):
• LSTM-RNN-CTC: 5-layer uni-LSTM-P, 1024 memory units and projection layer with 512 

nodes. Output layer has 5 nodes, modeling Hey, Cortana, silence, garbage, and blank.
• Small-size model (0.9M parameters):

• 3-layer uni-LSTM-P, 256 memory units and projection layer with 128 nodes, with SVD.


