Distributed Model Construction in Radio Interferometric Calibration

Sarod Yatawatta

ASTRON

The Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands in collaboration with Netherlands eScience Center, Science Park, Amsterdam, The Netherlands This work was supported by Netherlands eScience Center (project DIRAC, grant 27016G05).

Introduction

- □ Calibration of radio telescopes: essential for correcting systematic errors (beam,ionosphere), removal of strong contaminating signals (foregrounds): for high quality imaging.
- □ Terabytes of data observed, data split into thousands of frequency channels, also stored at different locations in a network.
- □ Calibration solutions contain information about systematic errors.
- □ How do we build complete models for systematic errors in the data using calibration solutions?

LBA dipole HBA dipole HBA dipole LBA: low band (10-80 MHz), HBA: high band (100-240 MHz)

Antenna array

Phased array built using many dipoles

Modern radio telescopes

LOFAR core in the Netherlands

Radio interferometers

Radio interferometry

We observe the Fourier transform of the sky. Major steps in radio astronomy:

- □ Correlation, Interference mitigation.
- \Box Calibration:
 - Estimate the systematic errors in the data and correct for them.
 - Remove strong foreground sources to reveal weaker signals.
- \Box Imaging and deconvolution:
 - Convert observed Fourier space data into real space images.
 - Remove errors due to incomplete sampling (deconvolution).
- \Box Finally ... Science.

Calibration

$$\mathsf{V}_{pqf} = \mathsf{J}_{pf}\mathsf{C}_{pqf}\mathsf{J}_{qf}^{H} + \mathsf{N}_{pqf}$$

Observed data V_{pqf} at baseline *p*-*q* at frequency *f*, corrupted by systematic errors J_{pf} and J_{qf} . Cost function

$$g_f(\mathsf{J}_f) = \sum_{p,q} \|\mathsf{V}_{pqf} - \mathsf{A}_p\mathsf{J}_f\mathsf{C}_{pqf}(\mathsf{A}_q\mathsf{J}_f)^H\|^2$$

where C_{pqf} is scalar, diagonal and

$$\mathsf{J}_{f} \stackrel{\triangle}{=} [\mathsf{J}_{1f}^{T}, \mathsf{J}_{2f}^{T}, \dots, \mathsf{J}_{Nf}^{T}]^{T}, \quad \mathsf{A}_{p} \stackrel{\triangle}{=} [\mathbf{0}, \mathbf{0}, \dots, \mathsf{I}, \dots, \mathbf{0}]$$

Calibration: minimizing $g_f(J_f)$ to find J_f . Information about beam shape and ionosphere is hidden in J_f .

This work: building model X from calibration solutions J_f .

$$\mathsf{J}_f = \mathsf{X} \mathbf{\Phi}_{\alpha\beta f}$$

where (α, β) spatial, *f* frequency coordinates, $\Phi_{\alpha\beta f}$: basis functions.

Dipole beam and the sky

Magnitude of dipole beam projected onto the sky, zenith on top

Station beam

Station (array of dipoles) creates a focused beam, with sidelobes

lonosphere

Atmospheric conditions in troposphere and ionosphere create errors. left: beam and ionospheric errors, middle: ionospheric errors only, right: after calibration

Distributed calibration

Data distributed across a cluster, calibration performed distributed and solutions also stored distributed.

Consensus optimization

Solutions affected by a unitary ambiguity, we have $\hat{J}_f = J_f U_f$ where U_f unknown unitary matrix. Eliminate unitary ambiguity by

$$\mathsf{A}_{p}\widehat{\mathsf{J}}_{f}\mathsf{C}_{pqf}(\mathsf{A}_{q}\widehat{\mathsf{J}}_{f})^{H} = \mathsf{A}_{p}\mathsf{X}\Phi_{\alpha\beta f}\mathsf{C}_{pqf}(\mathsf{A}_{q}\mathsf{X}\Phi_{\alpha\beta f})^{H}$$

and find X satisfying this for all (α, β) and f. Using cost functions $h_j(X)$

$$\mathsf{X} = \underset{\mathsf{X}}{\operatorname{arg\,min}} \sum_{j} h_{j}(\mathsf{X}) + \lambda \|\mathsf{X}\|^{2} + \mu \|\mathsf{X}\|_{1}$$

using elastic net regularization to minimize over fitting (physically realistic solution). Caveat: not easy to solve directly. Convert to a consensus problem as

$$\mathsf{X}_1, \mathsf{X}_2, \dots, \mathsf{Z} = \underset{\mathsf{X}_1, \dots, \mathsf{Z}}{\operatorname{arg min}} \sum_j h_j(\mathsf{X}) + \lambda \|\mathsf{Z}\|^2 + \mu \|\mathsf{Z}\|_1$$

subject to $X_j = Z$ for all j.

ADMM

Augmented Lagrangian

$$L(\mathsf{X}_{f_1},\ldots,\mathsf{Z},\mathsf{Y}_{f_1},\ldots) = \sum_j h_j(\mathsf{X}_j) + \|\mathsf{Y}_j^H(\mathsf{X}_j-\mathsf{Z})\| + \frac{\rho}{2} \|\mathsf{X}_j-\mathsf{Z}\|^2 + \lambda \|\mathsf{Z}\|^2 + \mu \|\mathsf{Z}\|_1$$

Iterative optimization with $n = 1, 2, \ldots$

 \Box Locally optimize to find

$$(\mathsf{X}_j)^{n+1} = \underset{\mathsf{X}_j}{\operatorname{arg\,min}} L_j \left(\mathsf{X}_j, (\mathsf{Z})^n, (\mathsf{Y}_j)^n\right)$$

□ Globally average and soft threshold (closed form solution)

$$(\mathsf{Z})^{n+1} = \arg\min_{\mathsf{Z}} \sum_{j} L_j \left((\mathsf{J}_j)^{n+1}, \mathsf{Z}, (\mathsf{Y}_j)^n \right)$$

□ Locally update Lagrange multiplier

$$(\mathsf{Y}_j)^{n+1} = (\mathsf{Y}_j)^n + \rho((\mathsf{X}_j)^{n+1} - (\mathsf{Z})^{n+1})$$

A typical sky model

 40×40 sq. deg. image, more sources appear in the center of the beam

Sources in calibration model

About 8000 sources covering a 10×10 square degrees

Small area with high sensitivity

Small area (about 1/1000) of the full field of view, each source gives a unique C_{pqf}

Simulation

- \Box Simulate an array with N = 6 receivers, data corrupted by simulated beam/ionospheric errors.
- □ How well can we build models for systematic errors?

Sky model, > 100 distinct directions in the sky, each giving a sampling point

Spatial basis functions

Spherical harmonic basis (left) real (right) imaginary parts

Frequency basis functions

True systematic errors (real part)

XX,XY,YX,YY polarizations

Linear model (real part)

Distributed model (real part)

True systematic errors (imaginary part)

Linear model (imaginary part)

XX,XY,YX,YY polarizations

Distributed model (imaginary part)

Conclusions

□ Distributed algorithm for construction of distributed models for ionosphere and beam shape: computationally efficient.

 \Box Elastic net regularization gives best results.

