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Introduction

� Calibration of radio telescopes: essential for correcting systematic
errors (beam,ionosphere), removal of strong contaminating signals
(foregrounds): for high quality imaging.

� Terabytes of data observed, data split into thousands of frequency
channels, also stored at different locations in a network.

� Calibration solutions contain information about systematic errors.

� How do we build complete models for systematic errors in the data
using calibration solutions?

LBA dipole HBA dipole
LBA: low band (10-80 MHz), HBA: high band (100-240 MHz)
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Antenna array

Phased array built using many dipoles
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Modern radio telescopes

LOFAR core in the Netherlands
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Radio interferometers

Beam

Receiver

Correlator

Celestial Sources

Atmosphere

Two Receivers = Interferometer
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Radio interferometry

We observe the Fourier transform of the sky. Major steps in radio
astronomy:

� Correlation, Interference mitigation.

� Calibration:

� Estimate the systematic errors in the data and correct for them.

� Remove strong foreground sources to reveal weaker signals.

� Imaging and deconvolution:

� Convert observed Fourier space data into real space images.

� Remove errors due to incomplete sampling (deconvolution).

� Finally ... Science.
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Calibration

Vpqf = JpfCpqfJ
H
qf + Npqf

Observed data Vpqf at baseline p-q at frequency f , corrupted by
systematic errors Jpf and Jqf .
Cost function

gf (Jf ) =
∑

p,q

‖Vpqf − ApJfCpqf (AqJf )
H‖2

where Cpqf is scalar, diagonal and

Jf
△
= [JT1f , J

T
2f , . . . , J

T
Nf ]

T , Ap
△
= [0,0, . . . , I, . . . ,0]

Calibration: minimizing gf (Jf ) to find Jf . Information about beam shape

and ionosphere is hidden in Jf .

This work: building model X from calibration solutions Jf .

Jf = XΦαβf

where (α, β) spatial, f frequency coordinates, Φαβf : basis functions.
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Dipole beam and the sky

Magnitude of dipole beam projected onto the sky, zenith on top

ICASSP 2018

– p. 8



Station beam

Station (array of dipoles) creates a focused beam, with sidelobes
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Ionosphere

Atmospheric conditions in troposphere and ionosphere create errors.
left: beam and ionospheric errors, middle: ionospheric errors only, right:

after calibration
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Distributed calibration

min g′
2
(J)

agents

min g′
1
(J) min g′

P
(J)

fusion center

.... ....................

f2f1 fP

data

fk

RDD

....................solutions

Data distributed across a cluster, calibration performed distributed and
solutions also stored distributed.
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Consensus optimization

Solutions affected by a unitary ambiguity, we have Ĵf = JfUf where Uf

unknown unitary matrix. Eliminate unitary ambiguity by

ApĴfCpqf (AqĴf )
H = ApXΦαβfCpqf (AqXΦαβf )

H

and find X satisfying this for all (α, β) and f . Using cost functions hj(X)

X = arg min
X

∑

j

hj(X) + λ‖X‖2 + µ‖X‖1

using elastic net regularization to minimize over fitting (physically realistic
solution). Caveat: not easy to solve directly.
Convert to a consensus problem as

X1,X2, . . . ,Z = arg min
X1,...,Z

∑

j

hj(X) + λ‖Z‖2 + µ‖Z‖1

subject to Xj = Z for all j.
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ADMM

Augmented Lagrangian

L(Xf1 , . . . ,Z,Yf1 , . . .) =
∑

j

hj(Xj)+‖YH
j (Xj−Z)‖+

ρ

2
‖Xj−Z‖2+λ‖Z‖2+µ‖Z‖1

Iterative optimization with n = 1, 2, . . .

� Locally optimize to find

(Xj)
n+1 = arg min

Xj

Lj (Xj , (Z)
n, (Yj)

n)

� Globally average and soft threshold (closed form solution)

(Z)n+1 = arg min
Z

∑

j

Lj

(
(Jj)

n+1,Z, (Yj)
n
)

� Locally update Lagrange multiplier

(Yj)
n+1 = (Yj)

n + ρ((Xj)
n+1 − (Z)n+1)
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A typical sky model

40×40 sq. deg. image, more sources appear in the center of the beam
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Sources in calibration model

About 8000 sources covering a 10× 10 square degrees
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Small area with high sensitivity

Small area (about 1/1000) of the full field of view, each source gives a
unique Cpqf
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Simulation

� Simulate an array with N = 6 receivers, data corrupted by simulated
beam/ionospheric errors.

� How well can we build models for systematic errors?

Sky model, > 100 distinct directions in the sky, each giving a sampling
point ICASSP 2018
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Spatial basis functions

Spherical harmonic basis (left) real (right) imaginary parts
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Frequency basis functions

Bernstein basis in frequency, 3 polynomials
Finally, Φαβf = the product of spatial and frequency bases.
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True systematic errors (real part)

XX

YX YY

XY

XX,XY,YX,YY polarizations
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Linear model (real part)

XX

YX YY

XY

XX,XY,YX,YY polarizations
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Distributed model (real part)

XX

YX YY

XY

XX,XY,YX,YY polarizations
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True systematic errors (imaginary part)

XX

YX YY

XY

XX,XY,YX,YY polarizations
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Linear model (imaginary part)

XX

YX YY

XY

XX,XY,YX,YY polarizations
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Distributed model (imaginary part)

XX

YX YY

XY

XX,XY,YX,YY polarizations
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Conclusions

� Distributed algorithm for construction of distributed models for
ionosphere and beam shape: computationally efficient.

� Elastic net regularization gives best results.
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